Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (5): 852-861    DOI: 10.3785/j.issn.1008-973X.2019.05.005
    
Maintenance, repair and overhaul/operations service resource scheduling optimization for complex products in uncertain environment
Xin-yu YANG1,2(),Ye-fa HU1,*()
1. School of Mechanical and Electric Engineering, Wuhan University of Technology, Wuhan 430070, China
2. School of Mechanical and Electric Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
Download: HTML     PDF(1108KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A stochastic chance-constrained programming mathematical model under uncertain resource scheduling time and uncertain service execution time was built from a realistic perspective, based on the requirement analysis of the collaborative maintenance, repair and overhaul/operations (MRO) service resource scheduling of complex products. A hybrid intelligent algorithm composed of the stochastic simulation, the neural network and the discrete particle swarm optimization algorithm was proposed to solve the proposed optimization problem. The training sample set produced by stochastic simulation was used to train the neural network for the approximation of the optimization objective function. The trained neural network model was used to replace the optimization objective function to perform the optimization iterations of particle swarm algorithm. This hybrid intelligent algorithm can effectively improve the solving rate of bi-objective problem of collaborative MRO service resource scheduling of complex products under uncertain time variables. The results of case study showed that the proposed stochastic chance-constrained programming model and the hybrid intelligent algorithm were more suitable for solving the MRO service resource scheduling problem under uncertainty in the reality, compared with the optimization algorithm under certainty. The proposed scheduling scheme was more robust in practical implementation.



Key wordsmaintenance, repair and overhaul/operations (MRO) service      parameter uncertainty      stochastic simulation      neural network      discrete particle swarm optimization algorithm     
Received: 15 April 2018      Published: 17 May 2019
CLC:  TP 391  
Corresponding Authors: Ye-fa HU     E-mail: yangxy@zzuli.edu.cn;huyefa@whut.edu.cn
Cite this article:

Xin-yu YANG,Ye-fa HU. Maintenance, repair and overhaul/operations service resource scheduling optimization for complex products in uncertain environment. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 852-861.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.05.005     OR     http://www.zjujournals.com/eng/Y2019/V53/I5/852


不确定环境下复杂产品维护、维修和大修服务资源调度优化

基于对复杂产品维护、维修和大修(MRO)协同服务资源调度的需求分析,从现实角度出发,建立资源调度时间和服务执行时间参数不确定条件下的随机机会约束规划数学模型. 提出由随机模拟、神经网络和离散粒子群优化算法组合成的混合智能算法,求解所提出的优化问题. 随机模拟方法为所建立的神经网络模型提供训练样本集,得到的训练样本集被用于训练神经网络模型以逼近优化目标函数,训练后的神经网络模型被用于代替优化目标函数来执行粒子群算法优化迭代. 该混合算法能有效提升时间参数不确定条件下的复杂产品MRO协同服务资源调度双目标优化问题的求解速度. 案例分析表明,相比于确定性条件下的优化算法,所提出的随机机会约束规划模型和混合算法更适用于求解现实中不确定条件下的MRO服务资源调度问题,所求得的调度方案在实际执行中具有更好的鲁棒性.


关键词: 维护、维修和大修(MRO)服务,  参数不确定性,  随机模拟,  神经网络,  离散粒子群优化算法 
Fig.1 Multi-objective optimization process analysis
Fig.2 Extraction combination of service resource scheduling scheme
Fig.3 Subtask division and logic execution sequence
Fig.4 Flow chart of proposed hybrid algorithm
Fig.5 Flow chart of standard PSO algorithm
Fig.6 Numerical conversion method of particle position
参数 取值
T3×7/h $\left[ {\begin{array}{*{20}{c}} {N(45, 64)}&{N(20, 64)}&{N(30, 16)}&{N(50, 64)}&{N(12, 16)}&{N(10, 25)}&{N(24, 25)} \\ {N(30, 100)}&{N(10, 25)}&{N(12, 16)}&{N(25, 25)}&{N(24, 64)}&{N(15, 64)}&{N(40, 25)} \\ {N(25, 64)}&{N(40, 49)}&{N(20, 25)}&{N(30, 64)}&{N(40, 25)}&{N(30, 25)}&{N(25, 64)} \end{array}} \right]$
H3×7 $\left[ {\begin{array}{*{20}{c}} {0.8}&{0.8}&{0.7}&{0.7}&{0.6}&{0.6}&{0.8} \\ {0.7}&{0.6}&{0.5}&{0.8}&{0.9}&{0.8}&{0.8} \\ {0.6}&{0.8}&{0.6}&{0.8}&{0.8}&{0.8}&{0.7} \end{array}} \right]$
Cg3×7/元 $\left[ {\begin{array}{*{20}{c}} {425}&{385}&{645}&{880}&{1200}&{130}&{250} \\ {350}&{350}&{570}&{980}&{1600}&{220}&{150} \\ {250}&{410}&{780}&{870}&{1300}&{330}&{240} \end{array}} \right]$
Ch3×7/(元/h) $\left[ {\begin{array}{*{20}{c}} {30}&{20}&{55}&{60}&{60}&{15}&{10} \\ {25}&{25}&{60}&{55}&{50}&{10}&{15} \\ {20}&{35}&{50}&{50}&{55}&{10}&{15} \end{array}} \right]$
w1×7 $[ {\begin{array}{*{20}{c}} 4,&\!\!3,&\!\!5,&\!\!6,&\!\!8,&\!\!3,&\!\!4 \end{array}}]$
Tr1×5/h $[ {\begin{array}{*{20}{c}} {N(12, 16)},&{N(30, 64)},&{N(12, 25)},&{N(20, 64)},&{N(12, 64)} \end{array}}]$
O5×7 $\left[ {\begin{array}{*{20}{c}} 0&1&0&0&0&1&0 \\ 1&0&1&0&0&0&1 \\ 1&0&0&0&1&0&1 \\ 0&0&0&1&0&0&1 \\ 0&1&0&0&0&1&1 \end{array}} \right]$
Q5×5 $\left[ {\begin{array}{*{20}{c}} 0&1&1&0&0 \\ 0&0&0&0&1 \\ 0&0&0&1&0 \\ 0&0&0&0&1 \\ 0&0&0&0&0 \end{array}} \right]$


Tab.1 Key parameters of service task scheduling optimization
Fig.7 BP network training result of MRO service scheduling optimization
Fig.8 Comparison of Pareto optimal solutions under different conditions
序号 资源组合方案编码 确定条件下适应度 不确定条件下适应度
1 [1,1,1,3,2,2,3] [?17,44.238 6] [?26.299 7,22.476 3]
2 [1,1,1,3,2,2,1] [?16,41.161 1] [?24.081 6,31.819 9]
3 [1,1,1,3,2,3,1] [?12,35.159 9] [?19.129 4,29.524 7]
Tab.2 Optimized resource combination scheme and fitness value under certain conditions
序号 资源组合方案编码 不确定条件下适应度
1 [1,3,1,3,2,2,1] [?18.775 9,29.160 2]
2 [1,3,1,2,2,2,1] [?18.525 4,28.799 0]
3 [1,1,2,2,2,2,1] [?23.778 4,30.360 0]
4 [1,3,2,2,2,2,1] [?18.497 5,27.935 0]
5 [1,1,1,3,2,2,1] [?24.081 6,31.819 9]
6 [1,3,1,2,2,3,1] [?18.202 6,27.3827 0]
Tab.3 Optimized resource combination scheme and fitness value under uncertain conditions (partial examples)
[1]   李浩, 纪杨建, 祁国宁, 等 面向全生命周期的复杂装备MRO集成模型研究[J]. 计算机集成制造系统, 2010, 16 (10): 2064- 2072
LI Hao, JI Yang-jian, QI Guo-ning, et al Integration model of complex equipment MRO based on lifecycle management[J]. Computer Integrated Manufacturing Systems, 2010, 16 (10): 2064- 2072
[2]   LI H, MI S H, LI Q F, et al. A scheduling optimization method for MRO service resources for complex products [J/OL]. Journal of Intelligent Manufacturing [2018-06-10]. https://doi.org/10.1007/s10845-018-1400-4.
[3]   LI H, JI Y J, GU X J, et al A universal enterprise manufacturing services maturity model: a case study in a Chinese company[J]. International Journal of Computer Integrated Manufacturing, 2014, 27 (5): 434- 449
doi: 10.1080/0951192X.2013.814164
[4]   SAKAWA M, MORI T An efficient genetic algorithm for job-shop scheduling problems with fuzzy processing time and fuzzy duedate[J]. Computers and Industrial Engineering, 1999, 36 (2): 325- 341
doi: 10.1016/S0360-8352(99)00135-7
[5]   SAHINIDIS N V Optimization under uncertainty: state-of-the-art and opportunities[J]. Computers and Chemical Engineering, 2004, 28 (6): 971- 983
[6]   顾幸生 不确定性条件下的生产调度[J]. 华东理工大学学报, 2000, 26 (5): 441- 446
GU Xing-sheng A survey of production scheduling under uncertainty[J]. Journal of East China University of Science and Technology, 2000, 26 (5): 441- 446
doi: 10.3969/j.issn.1006-3080.2000.05.001
[7]   徐震浩, 顾幸生 不确定条件下的flow shop问题的免疫调度算法[J]. 系统工程学报, 2005, 20 (4): 374- 380
XU Zhen-hao, GU Xing-sheng Immune scheduling algorithm for flow shop problems under uncertainty[J]. Journal of Systems Engineering, 2005, 20 (4): 374- 380
doi: 10.3969/j.issn.1000-5781.2005.04.006
[8]   张国军, 李婵娟, 朱海平, 等 不确定信息条件下Job-shop调度的混合智能算法[J]. 中国机械工程, 2007, 18 (16): 1939- 1942
ZHANG Guo-jun, LI Chan-juan, ZHU Hai-ping, et al A hybrid intelligent algorithm for Job-shop scheduling under uncertain information environment[J]. China Mechanical Engineering, 2007, 18 (16): 1939- 1942
doi: 10.3321/j.issn:1004-132x.2007.16.012
[9]   潘全科, 朱剑英 多工艺路线的作业车间模糊调度优化[J]. 中国机械工程, 2004, 15 (24): 2199- 2202
PAN Quan-ke, ZHU Jian-ying An efficient algorithm for job shop scheduling problems with fuzzy processing time, fuzzy duedate and alternative machines[J]. China Mechanical Engineering, 2004, 15 (24): 2199- 2202
doi: 10.3321/j.issn:1004-132X.2004.24.010
[10]   ADHITYA A, SRINIVASAN R, KARIMI I A Heuristic rescheduling of crude oil operations to manage abnormal supply chain events[J]. AICHE Journal, 2007, 53 (2): 397- 422
doi: 10.1002/(ISSN)1547-5905
[11]   JHA M K, SHARIAT S, ABDULLAH J, et al Maximizing resource effectiveness of highway infrastructure maintenance inspection and scheduling for efficient city logistics operations[J]. Procedia-Social and Behavioral Sciences, 2012, 39: 831- 844
doi: 10.1016/j.sbspro.2012.03.151
[12]   MARTORELL S, VILLAMIZAR M, CARLOS S, et al Maintenance modeling and optimization integrating human and material resources[J]. Reliability Engineering and System Safety, 2010, 95 (12): 1293- 1299
doi: 10.1016/j.ress.2010.06.006
[13]   DE CASTRO F, CAVALCA K L Maintenance resources optimization applied to a manufacturing system[J]. Reliability Engineering and System Safety, 2006, 91 (4): 413- 420
doi: 10.1016/j.ress.2005.02.004
[14]   郑小强, 刘敏, 孔繁荣, 等 基于云遗传算法的MRO服务调度[J]. 计算机集成制造系统, 2013, 19 (9): 2348- 2354
ZHENG Xiao-qiang, LIU Min, KONG Fan-rong, et al Cloud genetic algorithm based MRO services scheduling model[J]. Computer Integrated Manufacturing Systems, 2013, 19 (9): 2348- 2354
[15]   李旭. 复杂装备MRO服务的若干关键技术研究[D]. 杭州: 浙江大学, 2012.
LI Xu. Research on some key technologies of MRO service for complex equipment [D]. Hangzhou: Zhejiang University, 2012.
[16]   密尚华. 复杂产品服务业务建模与资源调度优化方法研究[D]. 郑州: 郑州轻工业学院, 2016.
MI Shang-hua. Modeling and resources scheduling optimization method for the service business process of complex product [D]. Zhengzhou: Zhengzhou University of Light Industry, 2016.
[17]   李培根. 制造系统性能分析建模:理论与方法[M]. 武汉:华中理工大学出版社, 1998: 25-30.
[18]   刘宝碇, 赵瑞清, 王纲. 不确定规划及应用[M]. 北京:清华大学出版社, 2003: 24-29.
[19]   方述成, 汪定伟. 模糊数学与模糊优化[M]. 北京: 科学出版社, 1997: 60-63.
[20]   KALL P, STEIN W W, PETER K. Stochastic programming [M]. Chichester: Wiley, 1994: 46-49.
[21]   肖宁 求解随机机会约束规划的混合智能算法[J]. 计算机工程与应用, 2010, 46 (22): 43- 46
XIAO Ning Solving stochastic chance-constrained programming problems with hybrid intelligent algorithm[J]. Computer Engineering and Applications, 2010, 46 (22): 43- 46
doi: 10.3778/j.issn.1002-8331.2010.22.015
[22]   丁晓东, 吴让泉 含有模糊和随机参数的混合机会约束规划模型[J]. 控制与决策, 2002, 17 (5): 587- 590
DING Xiao-dong, WU Rang-quan Hybrid programming model with fuzzy and stochastic parameters[J]. Control and Decision, 2002, 17 (5): 587- 590
doi: 10.3321/j.issn:1001-0920.2002.05.018
[23]   焦李成. 神经网络系统理论[M]. 西安:西安电子科技大学出版社, 1992: 55-59.
[24]   周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 70-78.
[25]   郑金华. 多目标进化算法及其应用[M]. 北京: 科学出版社, 2007: 62-68.
[26]   DEB K, PRATAP A, AGARWAL S, et al A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182- 197
doi: 10.1109/4235.996017
[27]   KENNEDY J. Particle swarm optimization [M]// Encyclopedia of machine learning. New York: Springer, 2011: 760-766.
[28]   曾建潮, 介婧, 崔志华. 微粒群算法[M]. 北京: 科学出版社, 2004: 56-59.
[29]   KRAUSE J, CORDEIRO J, PARPINELLI R S, et al. A survey of swarm algorithms applied to discrete optimization problems [M]// Swarm intelligence and bio-inspired computation: theory and applications. London: Elsevier, 2013: 169-191.
[1] Jia-hui XU,Jing-chang WANG,Ling CHEN,Yong WU. Surface water quality prediction model based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 601-607.
[2] Hong CHENG,Jia-jie HU,Yong LIU,Yuan-qing YE. Three-dimensional reconstruction algorithm based on fusion of transport of intensity equation and neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 658-664.
[3] Ying-jie ZHENG,Song-rong WU,Ruo-yu WEI,Zhen-wei TU,Jin LIAO,Dong LIU. Metro location point matching and false alarm elimination based on FCM algorithm of target image[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 586-593.
[4] Yi-zhe MAO,Guo-fang GONG,Xing-hai ZHOU,Fei WANG. Identification of TBM surrounding rock based on Markov process and deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 448-454.
[5] Fang LIU,Zhen WANG,Rui-di LIU,Kai WANG. Short-term forecasting method of wind power generation based on BP neural network with combined loss function[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 594-600.
[6] Shi-da CHEN,Qiang LIU,Liang HAN. Gradient sparsification compression approach to reducing communication in distributed training[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 386-394.
[7] Yan-wei ZHAO,Jian ZHANG,Xian-ming ZHOU,Geng-yu WU. Dynamic tracking and precise landing of UAV based on visual magnetic guidance[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 96-108.
[8] Wei-qi CHEN,Jing-chang WANG,Ling CHEN,Yong-qin YANG,Yong WU. Prediction model of multi-factor aware mobile terminal replacement based on deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 109-115.
[9] Qiao-hong CHEN,YI CHEN,Wen-shu Li,Yu-bo JIA. Clothing image classification based on multi-scale SE-Xception[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1727-1735.
[10] Deng-wen ZHOU,Jin-yue TIAN,Lu-yao MA,Xiu-xiu SUN. Lightweight image semantic segmentation based on multi-level feature cascaded network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1516-1524.
[11] Yan-nan ZHANG,Xiao-hong HUANG,Yan MA,Qun CONG. Method with recording text classification based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1264-1271.
[12] Xu YAN,Xiao-liang FAN,Chuan-pan ZHENG,Yu ZANG,Cheng WANG,Ming CHENG,Long-biao CHEN. Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1147-1155.
[13] Zheng-rui TAO,Jia-qiang DANG,Jing-yang XU,Qing-long AN,Ming CHEN,Li WANG,Fei REN. High-precision calibration methods of thickness measurement for insulation coation on curved surface based on eddy current[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1218-1227.
[14] Hai-jin WANG,Zong-yu YIN,Zhen-zheng KE,Ying-jie GUO,Hui-yue DONG. Wear monitoring of helical milling tool based on one-dimensional convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 931-939.
[15] Jin-sheng JIANG,Hao-ran REN,Han-ye LI. Seismic data processing based on convolutional autoencoder[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 978-984.