Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (4): 775-780    DOI: 10.3785/j.issn.1008-973X.2018.04.022
Aeronautical and Space Technology     
Electromechanical integrated design of large modular-truss mesh reflector
GE Xiao-bo, XIE Liang, YANG Dong-wu, ZHANG Shu-xin, YANG Gui-geng
1. School of Electromechanical Engineering, Xidian University, Xi'an 710071, China;
2. Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, Xidian University, Xi'an 710071, China
Download:   PDF(1768KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An electromechanical integrated optimization model was constructed to design modular-truss mesh reflectors in order to reduce the adverse influence of the gaps between the modules on the antenna electromagnetic performance. The boundary cable sag-to-span ratios of the modules were the design variables. The antenna electromagnetic performance and the cable net mechanical performance were the objective functions. Then the optimization model was transferred into single-objective problem by using the weighting coefficient method and solved by the particle swarm optimization algorithm. The optimization of the antenna electromagnetic performance was realized on the basis of ensuring the mechanical properties of the cable net by taking the design of a 7 m diameter modular-truss mesh reflector as an example. Results showed the feasibility and effectiveness of the proposed method.



Received: 18 January 2017     
CLC:  V414  
Cite this article:

GE Xiao-bo, XIE Liang, YANG Dong-wu, ZHANG Shu-xin, YANG Gui-geng. Electromechanical integrated design of large modular-truss mesh reflector. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 775-780.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.04.022     OR     http://www.zjujournals.com/eng/Y2018/V52/I4/775


大型构架式索网反射面天线机电集成设计

为了尽可能减少构架式索网反射面天线各模块间的缝隙对天线电性能的不利影响,以各模块中索网边界的垂跨比为设计变量,以天线电性能和索网力学性能为设计目标,建立双目标机电集成优化数学模型.采用加权系数法,将优化模型转化为单目标问题,利用粒子群算法对优化模型进行求解.以设计某7 m口径构架式天线为例,在保证索网力学性能的基础上,实现了天线电性能的最优化,证明了该机电集成设计方法的可行性与有效性.

[1] EBISUI T, ISO A, ORIKASA T, et al. Characteristics of large deployable mesh reflector antennas for future mobile communications satellites[C]//14th International Communication Satellite Systems Conference and Exhibit. Washington:AIAA, 1992:1586-1592.
[2] OZAWA S,TSUJIHATA A. Lightweight design of 30m class large deployable reflector for communication satellites[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Colorado:AIAA, 2011:1829.1-7.
[3] OZAWA S,SHINTATE K, TSUJIHATA A. 30m class lightweight large deployable reflector[C]//Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP). Rome:IEEE, 2011:3354-3358.
[4] LI B, KONG W G, QI X Z. Modeling and design on modular deployable antenna[M]//DING X L, KONG X W, DAI J S. Advances in Reconfigurable Mechanisms and Robots Ⅱ. Switzerland:Springer, 2016:1037-1048.
[5] OZAWA S,SHINTATE K, TSUJIHATA A. Trifold deployable reflector for communication satellites[C]//29th AIAA International Communications Satellite Systems Conference. Nara:AIAA, 2011:8022.1-7.
[6] MEGURO A,SHINTATE K, USUI M, et al. In-orbit deployment characteristics of large deployable antenna reflector onboard engineering test satellite VⅢ[J]. Acta Astronautica, 2009, 65(9-10):1306-1316.
[7] HENRIKSEN T K, MANGENOT C. Large deployable antennas[J]. CEAS Space Journal, 2013, 5(3-4):87-88.
[8] SANTIAGO-PROWALD J, BAIER H. Advances in deployable structures and surfaces for large apertures in space[J]. CEAS Space Journal, 2013, 5(3-4):89-115.
[9] PUIG L, BARTON A, RANDO N. A review on large deployable structures for astrophysics missions[J]. Acta Astronautica, 2010, 67(1-2):12-26.
[10] MEGURO A,MITSUGI J, ANDO K. A modular cable-mesh deployable structure for large-scale satellite communication antennas[J]. Electronics and Communications in Japan, 2010, 77(8):90-100.
[11] ANDO K,MITSUGI J, SENBOKUYA Y. Analyses of cable-membrane structure combined with deployable truss[J]. Computers and Structures, 2000, 74(1):21-39.
[12] CHU Z R, DEND Z Q, QI X Z, et al. Modeling and analysis of a large deployable antenna structure[J]. Acta Astronautica, 2014, 95:51-60.
[13] 马亚静, 张树新, 曹鸿钧, 等. 垂跨比对张拉天线力学、电磁特性影响[J]. 空间电子技术, 2014, 11(2):36-41. MA Ya-jing, ZHANG Shu-xin, CAO Hong-jun, et al. Effects of sag-to-span ratio on mechanical and electromagnetic performance of tensegrity reflectors[J]. Space Electronic Technology, 2014, 11(2):36-41.
[14] ZHANG S X, DU J L, DUAN B Y, et al. Integrated structural electromagnetic shape control of cable mesh reflector antennas[J]. AIAA Journal, 2015, 53(5):1395-1399.
[15] MORTEROLLE S, MAURIN B, QUIRANT J, et al. Numerical form-finding of geotensoid tension truss for mesh reflector[J]. Acta Astronautica, 2012, 76:154-163.
[16] YANG D W, LIU J S, ZHANG Y Q, et al. Optimal surface profile design of deployable mesh reflectors via a force density strategy[J]. Acta Astronautica, 2017, 130:137-146.
[17] TIMAC G, BRAUT S, ZIGULI R.Comparative analysis of PSO algorithms for PID controller tuning[J]. Chinese Journal of Mechanical Engineering, 2014, 27(5):928-936.

[1] LI Wei, XUE Meng-De, XIANG Zhi-Hai. Thermal-dynamic stability analysis of structural appendages attached to satellite[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(7): 1288-1292.