A multi-objective matching design method based on the whole machine space dynamics prediction model was proposed by taking the moving structure mass as design variables. The whole machine workspace was constructed based on the working stroke of the moving parts of the machine tool. Then the orthogonal test method was used to design the spatial pose, and the prediction model of the spatial natural frequency was established. The sensitivity analysis of the machining path was conducted in the workspace. The best and worst position was identified. Then the optimal distribution of the mass of moving parts was designed by multi-objective mass matching method by taking the natural frequency of the machine tool with the worst position as the optimization objective. The natural frequency of the optimized machine tool was calculated. The dynamic characteristics of the best and worst position before and after optimization were analyzed and compared. Results show that the natural frequency of the machine tool was improved with the optimization of multi-objective mass matching, and the maximum frequency response amplitude of the tool tip was significantly reduced. The dynamic performance of the machine tool was greatly improved.
Hua HUANG,Wen-qiang DENG,Yuan LI,Run-lan GUO. Mass matching design of machine tool parts based on spatial dynamics optimization. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2009-2017.
Tab.4Equivalent stiffness and damping parameters of joints
试验号
f1/Hz
f2/Hz
f3/Hz
f4/Hz
f5/Hz
1
64.215
71.125
148.50
199.19
212.03
2
65.631
72.928
147.55
205.56
217.52
3
65.630
73.673
145.08
211.32
221.69
4
63.995
71.216
139.55
210.05
224.00
5
69.530
80.051
139.90
239.68
243.26
6
64.211
70.475
146.21
201.19
215.28
7
65.098
71.842
143.10
206.99
220.27
8
64.254
72.413
140.08
211.84
224.32
9
62.146
70.023
135.10
209.57
224.63
10
64.607
71.649
150.37
201.22
213.29
11
63.682
69.430
141.86
202.19
218.09
12
64.573
71.680
139.53
210.28
225.33
13
70.307
85.978
140.70
238.65
252.55
14
65.857
74.416
151.69
206.07
215.94
15
64.571
70.841
147.78
203.02
216.33
16
62.404
68.259
137.13
202.42
220.20
17
61.911
69.460
133.94
207.20
223.36
18
66.171
75.681
152.24
206.73
216.89
19
65.849
73.548
149.12
208.59
218.43
20
64.069
69.794
143.28
203.77
219.17
21
60.671
67.130
132.92
202.07
220.87
22
65.646
73.803
150.05
203.48
214.90
23
66.163
74.787
149.68
209.48
219.10
24
65.322
72.449
144.50
209.89
221.29
25
62.833
68.567
138.40
203.60
221.10
Tab.5Results of orthogonal experiment
ω
R2
ω
R2
ω1
0.996 5
ω4
0.998 4
ω2
0.998 6
ω5
0.998 7
ω3
0.999 2
?
?
Tab.6Accuracy test of prediction model
Fig.2Spatial inherent frequency prediction model of machine tools
Fig.3Global effect of inherent frequency on coordinate axis
Fig.4Iterative history diagram of worst position coordinates
Fig.5Iterative history diagram of best position coordinates
kg
水平
m1
m2
m3
?1
1209.115
2245.745
293.764
0
1511.400
2807.200
367.200
1
1813.672
3368.618
440.646
Tab.7Levels for mass test of moving parts
kg
试验号
移动件质量
m1
m2
m3
1
1209.115
2245.745
293.764
2
1209.115
3368.618
367.200
3
1813.672
2245.745
367.200
4
1813.672
3368.618
367.200
5
1209.115
2807.200
293.764
6
1209.115
2807.200
440.646
7
1813.672
2807.200
293.764
8
1813.672
2807.200
440.646
9
1511.400
2245.745
293.764
10
1511.400
2245.745
440.646
11
1511.400
3368.618
293.764
12
1511.400
3368.618
440.646
13
1511.400
2807.200
367.200
Tab.8Test table for mass distribution of moving parts
Fig.6Main effect of moving parts mass on natural frequencies of machine tools
kg
状态
m1
m2
m3
优化前
1511.400
2807.200
367.200
优化后
1639.916
2245.745
293.801
Tab.9Comparison of mass changes of moving parts before and after optimization
状态
f1/Hz
f2/Hz
f3/Hz
f4/Hz
f5/Hz
优化前
59.534
65.709
133.986
197.342
220.331
优化后
68.056
77.534
150.375
229.642
249.632
Tab.10First five natural frequencies of worst position of machine tools before and after optimization
状态
f1/Hz
f2/Hz
f3/Hz
f4/Hz
f5/Hz
优化前
64.397
70.327
145.61
203.57
217.91
优化后
71.946
78.541
162.53
226.94
243.00
Tab.11First five natural frequencies of best position of machine tools before and after optimization
Fig.7Frequency response curve of worst position
Fig.8Frequency response curve of best position
[1]
TOH C K Vibration analysis in high speed rough and finish milling hardened steel[J]. Journal of Sound and Vibration, 2004, 278 (1/2): 101- 115
[2]
ZAGHBAN I, SONGMENE V Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis[J]. International Journal of Machine Tools and Manufacture, 2009, 49 (12): 947- 957
[3]
李天箭, 吴晨帆, 沈磊, 等 基于模态预测及敏度分析的机床动特性设计方法[J]. 机械工程学报, 2019, 55 (7): 178- 186 LI Tian-jian, WU Chen-fan, SHEN Lei, et al Improving machine tool dynamic performance using modal prediction and sensitivity analysis method[J]. Journal of Mechanical Engineering, 2019, 55 (7): 178- 186
doi: 10.3901/JME.2019.07.178
[4]
ZAGHBANI I, SONGMENE V Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis[J]. International Journal of Machine Tools and Manufacture, 2009, 49 (12/13): 947- 957
doi: 10.1016/j.ijmachtools.2009.06.010
[5]
LAW M, ALTINTAS Y, PHANI A S Rapid evaluation and optimization of machine tools with position-dependent stability[J]. International Journal of Machine Tools and Manufacture, 2013, 68 (3): 81- 90
[6]
刘海涛, 赵万华 基于广义加工空间概念的机床动态特性分析[J]. 机械工程学报, 2010, 45 (21): 54- 60 LIU Hai-tao, ZHAO Wan-hua Dynamic characteristic analysis for machine tools based on concept of generalized manufacturing space[J]. Journal of Mechanical Engineering, 2010, 45 (21): 54- 60
[7]
王磊, 金涛, 陈卫星, 等 基于广义加工空间及工件效应的超重型机床动态特性分析[J]. 机械设计, 2012, 29 (1): 69- 73 WANG Lei, JIN Tao, CHEN Wei-xing, et al Dynamic characteristic analysis of super heavy machine tool based on generalized manufacturing space and workpiece effect[J]. Journal of Machine Design, 2012, 29 (1): 69- 73
[8]
刘响求. 基于多轴联合自激励的数控机床工作空间内结构动态特性分析[D]. 武汉: 华中科技大学, 2015. LIU Xiang-qiu. Analysis of dynamic characteristics of CNC machine tool structure during working space based on multi-axis excitation technology [D]. Wuhai: Huazhong University of Science and Technology, 2015.
[9]
黄华, 张树有, 刘晓健, 等 基于响应面模型的广义空间切削稳定性研究[J]. 浙江大学学报: 工学版, 2015, 49 (7): 1215- 1223 HUANG Hua, ZHANG Shu-you, LIU Xiao-jian, et al Research on cutting stability of generalized manufacturing space based on response surface model[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (7): 1215- 1223
[10]
李天箭, 丁晓红, 程凯 基于空间统计学的机床动力学特性[J]. 机械工程学报, 2015, 51 (21): 87- 94 LI Tian-jian, DING Xiao-hong, CHENG Kai Machine tool dynamics based on spatial statistics[J]. Journal of Mechanical Engineering, 2015, 51 (21): 87- 94
doi: 10.3901/JME.2015.21.087
[11]
于长亮, 张辉, 王仁彻, 等 机床整机动刚度薄弱环节辨识与优化方法研究[J]. 机械工程学报, 2013, 49 (21): 11- 17 YU Chang-liang, ZHANG Hui, WANG Ren-che, et al Research on identification and optimization method of weakness of machine tool's whole maneuvering stiffness[J]. Journal of Mechanical Engineering, 2013, 49 (21): 11- 17
doi: 10.3901/JME.2013.21.011
[12]
邓聪颖, 刘蕴, 殷国富, 等 基于响应面方法的数控机床空间动态特性研究[J]. 工程科学与技术, 2017, 49 (4): 211- 218 DENG Cong-ying, LIU Yun, YIN Guo-fu, et al Research on machine tool spatial dynamic characteristics based on response surface method[J]. Advanced Engineering Sciences, 2017, 49 (4): 211- 218
[13]
杨闪闪, 王玲, 廖启豪, 等 基于径向基函数法的五轴数控机床空间动态性能研究[J]. 机械工程学报, 2019, 55 (9): 144- 153 YANG Shan-shan, WANG Ling, LIAO Qi-hao, et al Study on the spatial dynamic performance of five-axis CNC machine tools based on radial basis function method[J]. Journal of Mechanical Engineering, 2019, 55 (9): 144- 153
doi: 10.3901/JME.2019.09.144
[14]
LUO B, PAN D W, CAI H, et al A method to predict position-dependent structural natural frequencies of machine tool[J]. International Journal of Machine Tools and Manufacture, 2015, 92: 72- 84
doi: 10.1016/j.ijmachtools.2015.02.009
[15]
ZHANG G P, HUANG Y M, SHI W H, et al Predicting dynamic behaviors of a whole machine tool structure based on computer-aided engineering[J]. International Journal of Machine Tools and Manufacture, 2003, 43 (7): 699- 760
doi: 10.1016/S0890-6955(03)00026-9
BURDEKIN M, BAEK N, COWLEY A Analysis of the local deformation in machine joints[J]. Journal Mechanical Engineering Science, 1979, 21 (1): 25- 32
doi: 10.1243/JMES_JOUR_1979_021_006_02
[18]
VAFAEI S, RAHNEJAT H, AINI R Vibration monitoring of high speed spindles using spectral analysis techniques[J]. International Journal of Machine Tools and Manufacture, 2002, 42 (11): 1223- 1234
doi: 10.1016/S0890-6955(02)00049-4
[19]
邓聪颖, 殷国富, 方辉, 等 基于正交试验的机床结合部动刚度优化配置[J]. 机械工程学报, 2015, 51 (19): 146- 153 DENG Cong-ying, YIN Guo-fu, FANG Hui, et al Optimal configuration of dynamic stiffness of machine tool joints based on orthrogonal experiment[J]. Journal of Mechanical Engineering, 2015, 51 (19): 146- 153
[20]
米良, 殷国富, 孙明楠, 等 基于结合部动力学特性的立柱-主轴系统动力学模型研究[J]. 农业机械学报, 2011, 42 (12): 202- 207 MI Liang, YIN Guo-fu, SUN Ming-nan, et al Study on dynamics model of column-spindle system based on dynamic characteristics of joints[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42 (12): 202- 207
SHI Hai-min, YU Xiao-li, HUANG Yu-qi, LIU Zhen-tao, LI Si-wen, LU Guo-dong. Shroud depth structure of multi-fans cooling package[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1844-1850.