Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (10): 2001-2008    DOI: 10.3785/j.issn.1008-973X.2020.10.018
    
Modeling of MR damper based on multi-field coupling analysis and influence of structural parameters
Teng-yi HUANG(),Jin ZHOU*(),Yan XU,Fan-xu MENG
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Download: HTML     PDF(1974KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A linear spring element was added to Bingham viscoplastic model to describe the viscoelastic plasticity of MR fluid in order to establish an accurate model for damper output. The above model was introduced into the multi-field coupling simulation by taking a shear and valve type magnetorheological (MR) damper with two-way push-over bar as the research object. The non-uniform dynamic magnetic field obtained by the magnetic field simulation was used to obtain the apparent viscosity distribution of MR fluid. Then the dynamic characteristics of the damper under different input excitation and current were obtained by post-processing. Results show that the simulation model of MR damper based on the series constitutive model is better consistent with the test results than the parallel constitutive model. The influence of each structural parameter on the damper magnetic field, the damper output and its adjustable range was analyzed according to the theory and simulation. The sensitivity of each parameter to the damper output was calculated. Results show that the gap of damper and piston diameter have great influence on the output of the damper, among which the piston diameter has the greatest influence, and the peak sensitivity index and average sensitivity index are 84.66% and 94.51 N respectively.



Key wordsmagnetorheological damper      multi-field coupling      viscoelastic-plastic constitutive model      indicator characteristics      sensitivity analysis     
Received: 24 September 2019      Published: 28 October 2020
CLC:  TH 137  
Corresponding Authors: Jin ZHOU     E-mail: 2893406081@qq.com;zhj@nuaa.edu.cn
Cite this article:

Teng-yi HUANG,Jin ZHOU,Yan XU,Fan-xu MENG. Modeling of MR damper based on multi-field coupling analysis and influence of structural parameters. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2001-2008.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.10.018     OR     http://www.zjujournals.com/eng/Y2020/V54/I10/2001


基于多场耦合分析的磁流变阻尼器建模与结构参数影响

为了建立准确的阻尼器出力模型,在Bingham黏塑性模型的基础上增加线性弹簧单元描述磁流变液的黏弹塑性. 以双出杆剪切阀式磁流变阻尼器为研究对象,将上述模型引入多场耦合仿真中,结合磁场仿真得到的非均匀动态磁场,可得磁流变液的表观黏度分布,处理得到阻尼器在不同的输入激励与电流下的动态特性. 研究结果表明,相较于并联本构,依据串联本构建立的磁流变阻尼器仿真模型与试验结果具有更好的一致性. 根据理论与仿真分析各结构参数对阻尼器磁场及阻尼器出力及其可调范围的影响,计算各参数对阻尼器出力的灵敏度. 结果表明,阻尼间隙与活塞直径对阻尼器的出力影响较大,其中活塞直径的影响最大,峰值灵敏度指标与均值灵敏度指标分别为84.66%和94.51 N.


关键词: 磁流变阻尼器,  多场耦合,  黏弹塑性本构模型,  示功特性,  灵敏度分析 
Fig.1 Bingham constitutive model
Fig.2 Parallel constitutive model
Fig.3 Series constitutive model
Fig.4 Schematic diagram of magnetic circuit structure of MR damper
Fig.5 Schematic diagram of magnetic circuit distribution of conductive magnet
Fig.6 Structural diagram of shear valve MR damper
Fig.7 Physical diagram of shear valve MR damper
Fig.8 B-H relation diagram of each magnetic material
Fig.9 Magnetic field distribution of MR damper at t=0 s
Fig.10 Magnetic field distribution of MR damper at t=0.125 s
Fig.11 Relation curve between shear yield strength and magnetic field of MRF
Fig.12 State of MRF at damping gap
Fig.13 Cloud figure of imported magnetic induction intensity distribution of MRF
Fig.14 Cloud figure of magnetoshear yield stress distribution of MRF
Fig.15 Indicator test of shear valve MR damper
Fig.16 Indicator diagram at f=2 Hz,A=0.5 mm,I=0.3 A
Fig.17 Indicator diagram at f=2 Hz,A=3 mm,I=0.3 A
Fig.18 Indicator diagram at f=4 Hz,A=0.5 mm,I=0.3 A
Fig.19 Indicator diagram at f=4 Hz,A=0.5 mm,I=1.2 A
Fig.20 Variation trend of maximum output force of damper with different structural parameters at I=0 A
Fig.21 Variation trend of maximum output force of damper with different structural parameters at I=2 A
Fig.22 Variation trend of adjustable multiple of damper with different structural parameters
Fig.23 Peak sensitivity index of each parameter
Fig.24 Average sensitivity index of each parameter
[1]   SHAMES I H, COZZARELLI F A. Elastic and inelastic stress analysis [M]. Englewood Cliffs: Prentice Hall, 1992.
[2]   FERRáS L L, FORD N J, MORGADO M L, et al. A primer on experimental and computational rheology with fractional viscoelastic constitutive models [C] // American Institute of Physics Conference Series. Zlín, Czech Republic: American Institute of Physics, 2017: 1-13.
[3]   陈丙三, 黄宜坚 分数阶在磁流变液性能研究中的应用[J]. 华侨大学学报: 自然科学版, 2009, 30 (5): 487- 491
CHEN Bing-san, HUANG Yi-jian Application of fractional order in the study of Magnetorheological fluid properties[J]. Journal of Huaqiao University: Natural Science, 2009, 30 (5): 487- 491
[4]   PENG X Q, SHI F, DAI Y F Magnetorheological fluids modelling: without the no-slip boundary condition[J]. International Journal of Materials and Product Technology, 2008, 31 (1): 27- 35
[5]   蔡路. 磁流变阻尼器设计、仿真与试验研究[D]. 成都: 西南交通大学, 2015: 23-38.
CAI Lu. Research on the design, simulation and test of MR damper [D]. Chengdu: Southwest Jiaotong University, 2015: 23-38.
[6]   PAUL M D, MOINUDDIN M A, ISLAM M M N Finite element analysis and simulation of a magneto - rheological damper[J]. International Journal for Innovative Research in Science and Technology, 2014, 1 (5): 12- 19
[7]   KAZAKOV Y B, MOROZOV N A, NESTEROV S A Development of models of the magnetorheological fluid damper[J]. Journal of Magnetism and Magnetic Materials, 2016, 431: 269- 272
[8]   KHAN S A, HAKEEMUDIN A, AHMED A M, et al Experimentation and simulation of smart fluid damper[J]. International Journal on Mechanical Engineering and Robotics, 2016, 4 (4): 56- 60
[9]   XIN D K, NIE S L, JI H, et al Characteristics, optimal design, and performance analyses of MRF damper[J]. Shock and Vibration, 2018, (3): 1- 17
[10]   于振环, 刘顺安, 张娜, 等 磁流变减振器多场耦合仿真分析[J]. 农业机械学报, 2014, (1): 1- 7
YU Zhen-huan, LIU Shun-an, ZHANG Na, et al Multifield coupling simulation analysis of magnetorheological shock absorber[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, (1): 1- 7
doi: 10.6041/j.issn.1000-1298.2014.01.001
[11]   FATHIMA S, MUTHALIF A G A, RAISUDDIN KHAN M Investigation of annular gap size for optimizing the dynamic range of MR damper using comsol multiphysics software[J]. Applied Mechanics and Materials, 2014, 606: 187- 192
doi: 10.4028/www.scientific.net/AMM.606.187
[12]   GURUBASAVARAJU T M, KUMAR H, MAHALINGAM A An approach for characterizing twin-tube shear-mode magnetorheological damper through coupled FE and CFD analysis[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40 (3): 139
doi: 10.1007/s40430-018-1066-z
[13]   PARLAK Z, ENGIN T, ?ALL? ? Optimal design of MR damper via finite element analyses of fluid dynamic and magnetic field[J]. Mechatronics, 2012, 22 (6): 890- 903
doi: 10.1016/j.mechatronics.2012.05.007
[14]   陈昭晖, 倪一清 自传感磁流变阻尼器实时阻尼力跟踪控制[J]. 浙江大学学报: 工学版, 2017, 51 (8): 1551- 1558
CHEN Zhao-hui, NI Yi-qing Real-time damping force tracking control of self-sensing magnetorheological dampers[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (8): 1551- 1558
[15]   周强, 瞿伟廉 磁流变阻尼器的两种力学模型和试验验证[J]. 地震工程与工程振动, 2002, 22 (4): 144- 150
ZHOU Qiang, QU Wei-lian Two kinds of mechanical models and experimental verification of magnetorheological dampers[J]. Earthquake Engineering and Engineering Vibration, 2002, 22 (4): 144- 150
doi: 10.3969/j.issn.1000-1301.2002.04.024
[16]   GINDER J M, PARTHASARATHY M. Magnetic properties of magnetorheological fluids [M] //周云.磁流变阻尼控制理论与技术.北京: 科学出版社, 2007: 36-39.
[17]   张红辉, 廖昌荣, 陈伟民, 等 磁流变阻尼器磁路设计及磁饱和有限元分析[J]. 功能材料与器件学报, 2004, (4): 96- 100
ZHANG Hong-hui, LIAO Chang-rong, CHEN Wei-min, et al Magnetic circuit design and magnetic saturation finite element analysis of magnetorheological dampers[J]. Journal of Functional Materials and Devices, 2004, (4): 96- 100
[18]   何小伟, 吴天行, 王誉蓉 混有空气的孔隙式粘滞流体阻尼器模型及性能研究[J]. 振动与冲击, 2014, 33 (1): 95- 100
HE Xiao-wei, WU Tian-xing, WANG Yu-rong Study on the model and performance of porous viscous fluid dampers mixed with air[J]. Journal of Vibration and Shock, 2014, 33 (1): 95- 100
doi: 10.3969/j.issn.1000-3835.2014.01.016
[19]   安晨亮, 马金玉, 王嘉维, 等 磁流变阻尼器输出阻尼力灵敏度分析[J]. 机电工程, 2018, 35 (11): 7- 14
AN Chen-liang, MA Jin-yu, WANG Jia-wei, et al Output damping force sensitivity analysis of MR damper[J]. Journal of Mechanical and Electrical Engineering, 2018, 35 (11): 7- 14
[1] Xiu-fen ZHANG,Yun-fei GAO. Multi-dimensional hierarchical remanufacturability evaluation method for end-of-life mechanical parts[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 954-962.
[2] Feng CHENG,Dong ZHANG,Shuo TANG. Aerodynamics/propulsion coupled modeling and analysis of hypersonic vehicle within wide speed range[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 1006-1018.
[3] Jin ZHOU,Tian-yu GAO,Yi CHEN,Hong-hao XI. Model updating of dual-rotor decanter centrifuge with dynamic test[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 241-249.
[4] REN Song, OUYANG Xun, WU Jian-xun, CHEN Fan, WANG Liang, CHEN Jie. Elastic-swelling analytical model of anhydrite rock considering time-dependent effect[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 896-905.
[5] BAO Teng-fei, LI Jian-ming, ZHAO Jin-lei. Strain transfer analysis between embedded plastic optical fibers and concretes[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2342-2348.
[6] LUO Yue, YE Shu-jun, WU Ji-chun, ZHANG Yan-hong, JIAO Xun, WANG Han-mei. Global sensitivity analysis of parameters in land subsidence model[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 2007-2013.
[7] CHEN Zhao-hui, NI Yi-qing. Real-time damping-force tracking control of self-sensing magnetorheological dampers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1551-1558.
[8] FU Jian-xin, SONG Wei-dong, TAN Yu-ye. Influence degree analysis of rock mass' mechanical parameters on roadway's deformation characteristics[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2365-2372.
[9] LIU Kai, CAO Yi, ZHOU Rui, GE Shu-yi, DING Rui. Modeling and optimizing of one-translational and two-rotational LEMs flexure hinge[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2399-2407.
[10] HE Hai bin, YAO Dong wei, WU Feng. Construction and optimization of kinetic mechanism for alternative fuel of COG[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1841-1848.
[11] YIN Jiao-mei, ZHAO Xin-yue, ZHANG Shu-you. Method for designing parts structure to resist harsh environments considering sobol defects sensitivity[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1487-1494.
[12] TAN Jun-hua, LUO Kun, FAN Jian-ren. Verification and analysis of soft-sphere model in fully-resolved simulation of particulate flow[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 344-350.
[13] LIU Jie, WANG Yu-ping. An improved central force optimization based on simplex method[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 2-.
[14] LIU Jie, WANG Yu-ping. An improved central force optimization based on simplex method[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2115-2122.
[15] CHEN Te-huan, XU Wei-hua, XU Chao, XIE Lei.
Inverse problem solution of pipeline leakage model based on particle swarm optimization and sensitivity analysis
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1850-1855.