Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (5): 1020-1028    DOI: 10.3785/j.issn.1008-973X.2024.05.015
    
Effect of shear lag on stress at CFRP plate-steel beam reinforcement interface
Peiyun ZHU1(),Xiaozhang LI2,Mingming YU1,Xu XIE1,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. College of Civil Engineering and Architecture, Kunming University of Science and Technology, Kunming 650500, China
Download: HTML     PDF(3095KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The theoretical equations for interfacial stress calculation of carbon-fiber reinforced plastics (CFRP) reinforced beam considering shear lag were established based on the energy variational method of virtual work principle in order to analyze the effect of shear lag generated by bending deformation of I-section steel beams on interfacial normal and shear stresses of the adhesive layer. Then the correctness of the theoretical equations was verified by comparing with the experiment and finite element results. Interfacial shear and normal stresses of the adhesive layer of I-section steel beams under the action of different bending moments were conducted. Results show that assuming the longitudinal displacement of the flange plates caused by shear lag distributed in the cubic parabolic function along the lateral direction is reasonable. The shear lag effect cannot be ignored on interfacial stresses at the ends of the CFRP reinforcing I-section steel beams under bending deformation, and the impact degree magnifies with the increase of the section bending moment and flange plate width.



Key wordscarbon-fiber reinforced plastics (CFRP)      reinforcement of I-section steel beam      shear lag      energy variational method      interfacial stress     
Received: 14 July 2023      Published: 26 April 2024
CLC:  TU 398  
Fund:  国家自然科学基金资助项目(52178174,51878606).
Corresponding Authors: Xu XIE     E-mail: 22112084@zju.edu.cn;xiexu@zju.edu.cn
Cite this article:

Peiyun ZHU,Xiaozhang LI,Mingming YU,Xu XIE. Effect of shear lag on stress at CFRP plate-steel beam reinforcement interface. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1020-1028.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.05.015     OR     https://www.zjujournals.com/eng/Y2024/V58/I5/1020


剪力滞对CFRP板-钢梁加固界面应力的影响

为了分析工字钢梁弯曲变形产生的剪力滞效应对黏结层法向应力和切应力的影响,基于虚功原理的能量变分法建立考虑剪力滞的碳纤维增强复合材料(CFRP)加固梁黏结应力计算理论方程. 通过与试验和有限元数值模拟结果的对比,验证了理论方程的正确性. 开展不同弯矩作用下的工字型钢梁黏结层界面切应力和法向应力参数分析. 结果表明,剪力滞引起的翼缘板纵向位移沿横向3次抛物线分布的假定是合理的. 剪力滞效应对CFRP加固工字钢梁弯曲变形下的端部界面应力影响不可忽略,影响程度随着截面弯矩和翼缘板宽度的增加而增大.


关键词: 碳纤维增强复合材料(CFRP),  工字型钢梁加固,  剪力滞,  能量变分法,  界面应力 
Fig.1 Cross-sectional geometric parameters and longitudinal displacement assumptions for thin plates
Fig.2 Internal forces of infinitesimal structure and interfacial stress of adhesive layer
材料E/GPa$\nu $
钢梁2060.3
CFRP板1630.3
黏结层2.440.35
Tab.1 Material parameter of test beam
Fig.3 Reinforced simply supported beam under uniform load
Fig.4 Figures of specimens and test devices
Fig.5 Strain gauge arrangement and measuring point
Fig.6 Finite element model of test beam
Fig.7 Strain of CFRP plates and lower flange plate of steel beam along beam length
Fig.8 Strain of CFRP plates
Fig.9 Strain of lower flange plate of steel beam
Fig.10 Reinforced simply supported beam with bending moment applied at each end under uniform load
材料E11/GPaE22 /GPaG12/GPa$\nu $
钢梁206206790.3
CFRP板3101026.40.3
黏结层1.281.280.470.35
Tab.2 Material parameters of reinforced beam
Fig.11 Interfacial stresses of adhesive layer in simply supported beam with bending moment ql2/10 applied at each end
Fig.12 Interfacial stress of adhesive layer in wide flange plate simply supported beam under bending moment ql2/10 applied at each end
Fig.13 Interfacial stress of adhesive layer in narrow flange plate simply supported beam under bending moment ql2/10 applied at each end
Fig.14 Reinforced cantilever beam under uniform load
Fig.15 Interfacial normal and shear stresses of adhesive layer in cantilever beam
Fig.16 Simply supported beam under bending moment applied at each end and uniform load
Fig.17 Variation of end interfacial stress with additional bending moment
[1]   王春生, 翟慕赛, HOUANKPO T N O, 等 正交异性钢桥面板冷维护技术及评价方法[J]. 中国公路学报, 2016, 29 (8): 50- 58
WANG Chunsheng, ZHAI Musai, HOUANKPO T N O, et al Cold maintenance technique and assessment method for orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2016, 29 (8): 50- 58
[2]   HOLLAWAY L C, ZHANG L, PHOTIOU N K, et al Advances in adhesive joining of carbon fibre/polymer composites to steel members for repair and rehabilitation of bridge structures[J]. Advances in Structural Engineering, 2006, 9 (6): 791- 803
doi: 10.1260/136943306779369419
[3]   石川敏之 鋼橋の CFRP 板接着補修·補強の現状と課題[J]. 日本接着学会誌, 2009, 45 (4): 139- 144
ISHIKAWA T The current situation and issues of repair and strengthening of steel bridges by bonding CFRP strips[J]. Journal of the Adhesion Society of Japan, 2009, 45 (4): 139- 144
doi: 10.11618/adhesion.45.139
[4]   蔡妙君, 李耘宇, 李之达, 等 CFRP-钢复合板的单轴拉伸力学性能[J]. 工程与建设, 2019, 33 (1): 136- 139
CAI Miaojun, LI Yunyu, LI Zhida, et al Uniaxial tensile mechanical properties of CFRP-steel composite plate[J]. Engineering and Construction, 2019, 33 (1): 136- 139
[5]   李传习, 柯璐, 陈卓异, 等 正交异性钢桥面板弧形切口及其CFRP补强的疲劳性能[J]. 中国公路学报, 2021, 34 (5): 63- 75
LI Chuanxi, KE Lu, CHEN Zhuoyi, et al Fatigue behavior and CFRP reinforcement of diaphragm cutouts in orthotropic steel bridge decks[J]. China Journal of Highway and Transport, 2021, 34 (5): 63- 75
[6]   DENG Y, LIU T L, CAO B Y, et al Fatigue strengthening for rib-to-deck joint by bonding reinforcing plates on the deck surface[J]. Journal of Bridge Engineering, 2023, 28 (7): 04023040
doi: 10.1061/JBENF2.BEENG-5617
[7]   张宁, 岳清瑞, 佟晓利, 等 碳纤维布加固修复钢结构黏结界面受力性能试验研究[J]. 工业建筑, 2003, 33 (5): 71- 73
ZHANG Ning, YUE Qingrui, TONG Xiaoli, et al Research on the adhesive interface stress of CFRP for the strengthened steel structure[J]. Industrial Construction, 2003, 33 (5): 71- 73
[8]   COLOMBI P, FAVA G Fatigue crack growth in steel beams strengthened by CFRP strips[J]. Theoretical and Applied Fracture Mechanics, 2016, 85B: 173- 182
[9]   陈卓异, 彭岚, 李传习, 等 CFRP全覆盖胶粘加固含中心裂纹钢板的静力性能[J]. 复合材料学报, 2022, 39 (5): 2329- 2339
CHEN Zhuoyi, PENG Lan, LI Chuanxi, et al Static behavior of CFRP full cover adjusted steel plate with center crack[J]. Journal of Composite Materials, 2022, 39 (5): 2329- 2339
[10]   NOZAKA K, SHIRLD C K, HAJJAR J F Design of a test specimen to assess the effective bond length of carbon fiber-reinforced polymer strips bonded to fatigued steel bridge girders[J]. Journal of Composites for Construction, 2005, 9 (4): 304- 312
doi: 10.1061/(ASCE)1090-0268(2005)9:4(304)
[11]   KIM Y J, HARRIES K A Fatigue behavior of damaged steel beams repaired with CFRP strips[J]. Engineering Structures, 2011, 33 (5): 1491- 1502
doi: 10.1016/j.engstruct.2011.01.019
[12]   TENG J G, YU T, FERNANDO D Strengthening of steel structures with fiber-reinforced polymer composites[J]. Journal of Constructional Steel Research, 2012, 78: 131- 143
doi: 10.1016/j.jcsr.2012.06.011
[13]   杭航 装饰艺术用FRP/钢界面黏结性能研究[J]. 太原学院学报:自然科学版, 2021, 39 (3): 35- 40
HANG Hang Study on interfacial bonding properties of FRP/steel for decorative arts[J]. Journal of Taiyuan University: Natural Science Edition, 2021, 39 (3): 35- 40
[14]   MA Y, MA K, HAN X, et al Experimental investigation of FRP-confined HSC-filled steel tube stub columns under axial compression[J]. Engineering Structures, 2023, 280: 115670
doi: 10.1016/j.engstruct.2023.115670
[15]   邓军, 黄培彦 CFRP板与钢梁黏结剥离破坏的试验研究[J]. 建筑结构学报, 2007, 28 (5): 124- 129
DENG Jun, HUANG Peiyan Experimental study on debonding failure of steel beams strengthened with a CFRP plate[J]. Journal of Building Structures, 2007, 28 (5): 124- 129
[16]   袁菁颖, 王春江, 李向民, 等 CFRP布加固H型钢梁承载力试验研究[J]. 建筑结构, 2011, 41 (10): 116- 119
YUAN Jingying, WANG Chunjiang, LI Xiangmin, et al Experimental research on H-shaped steel beam strengthened with CFRP[J]. Building Structure, 2011, 41 (10): 116- 119
[17]   完海鹰, 王春宇, 杜维凤, 等 二次受力下CFRP板加固钢梁静力试验和数值分析[J]. 建筑科学, 2016, 32 (5): 58- 63
WAN Hanying, WANG Chunyu, DU Weifeng, et al Experimental and numerical study on static behavior of steel beams reinforced by CFRP plates under secondary load[J]. Building Science, 2016, 32 (5): 58- 63
[18]   三枝玄希, 松本幸大, 松井孝洋, など VaRTM 法による CFRP 接着試験体の曲げ挙動評価[J]. 日本建築学会技術報告集, 2019, 25 (59): 193- 197
MIEDA G, MATSUMOTO Y, NANAMURA H, et al Bending behavior of CFRP strengthened steel by VaRTM technology[J]. AIJ Journal of Technology and Design, 2019, 25 (59): 193- 197
doi: 10.3130/aijt.25.193
[19]   PEIRIS A, HARIK I Steel beam strengthening with UHM CFRP strip panels[J]. Engineering Structures, 2021, 226: 1- 15
[20]   DU Y, GAO D, CHEN Z, et al Experimental and theoretical investigation of FRP-steel composite plate under cyclic tensile loading[J]. Thin-Walled Structures, 2023, 183: 110358
doi: 10.1016/j.tws.2022.110358
[21]   SMITH S T, TENG J G Interfacial stresses in plated beams[J]. Engineering Structures, 2001, 23 (7): 857- 871
doi: 10.1016/S0141-0296(00)00090-0
[22]   邓军, 黄培彦 预应力CFRP板加固钢梁的承载力及预应力损失分析[J]. 铁道建筑, 2007, 403 (10): 4- 7
DENG Jun, HUANG Peiyan Load capacity of pre-stressed CFRP plate reinforced steel beams and pre-stress loss analysis[J]. Railway Engineering, 2007, 403 (10): 4- 7
[23]   石川敏之 プレストレスが導入されたCFRP板接着鋼部材のはく離曲げモーメント[J]. 構造工学論文集A, 2010, 56A: 991- 998
ISHIKAWA T Debonding bending moment of pre-stressed CFRP bonded steel members[J]. Journal of Structural Engineering. A, 2010, 56A: 991- 998
[24]   清水優, 石川敏之, 服部篤史, など プレストレス導入CFRP板接着鋼部材のはく離曲げモーメント向上法の提案[J]. 土木学会論文集A2, 2011, 67 (2): 777- 784
SHIMIZU M, ISHIKAWA T, HATTORI A, et al Proposal of improvement of debonding bending moment for pre-stressed CFRP bonded steel member[J]. Journal of Japan Society of Civil Engineers, Ser. A2, 2011, 67 (2): 777- 784
[25]   STRATFORD T, CADEI J Elastic analysis of adhesion stresses for the design of a strengthening plate bonded to a beam[J]. Construction and Building Materials, 2006, 20 (1/2): 34- 45
doi: 10.1016/j.conbuildmat.2005.06.041
[26]   石川敏之, 清水優, 服部篤史, など 作用外力がCFRP板接着鋼部材の接着剤に生じる応力に与える影響[J]. 土木学会論文集A2, 2012, 68 (2): 715- 726
ISHIKAWA T, SHIMIZU M, HATTORI A, et al Effect of loading conditions on adhesive stresses of steel members strengthened by bonding CFRP plates[J]. Journal of Japan Society of Civil Engineers, Ser. A2, 2012, 68 (2): 715- 726
[27]   张慧敏. 钢箱梁剪力滞效应及其稳定性的研究[D]. 武汉: 武汉大学, 2017.
ZHANG Huimin. Research on the shear lag effect and the stability in steel box girder [D]. Wuhan: Wuhan University, 2017.
[28]   刘子利. 扁平钢箱系杆拱桥剪力滞效应研究[D]. 贵阳: 贵州大学, 2019.
LIU Zili. Study on shear lag effect of flat steel box tied arch bridge [D]. Guiyang: Guizhou University, 2019.
[29]   李艳凤, 罗天泽, 包龙生 鱼腹式连续钢箱梁纵向剪力滞规律分析[J]. 钢结构, 2019, 34 (2): 26- 29
LI Yanfeng, LUO Tianze, BAO Longsheng Analysis of longitudinal shear lag effect of fish-bellied continuous steel box girder[J]. Steel Construction, 2019, 34 (2): 26- 29
[30]   张睿. 波形钢腹板-钢底板组合箱梁桥的剪力滞效应分析[D]. 兰州: 兰州交通大学, 2020.
ZHANG Rui. Analysis on shear lag effect of composite box girder bridge with corrugated steel web and steel bottom plate [D]. Lanzhou: Lanzhou Jiaotong University, 2020.
[31]   REISSNER E Analysis of shear lag in box beams by the principle of minimum potential energy[J]. Quarterly of Applied Mathematics, 1946, 5 (3): 268- 278
[32]   吴幼明, 罗旗帜, 岳珠峰 薄壁箱梁剪滞效应的能量变分法[J]. 工程力学, 2003, 20 (4): 161- 165
WU Youming, LUO Qizhi, YUE Zhufeng Energy-variational method of the shear lag effect in thin walled box girder[J]. Engineering Mechanics, 2003, 20 (4): 161- 165
[33]   肖敏, 李新平 连续曲线箱梁剪力滞效应分析[J]. 中外公路, 2004, 24 (4): 61- 65
XIAO Min, LI Xinping Analysis of shear hysteresis effect of continuous curve box girder[J]. Journal of China and Foreign Highway, 2004, 24 (4): 61- 65
[1] HE Yu-liang, XIANG Yi-qiang, LI Shao-jun, LIU Li-si. Analysis on shear-lag effect of composite girders based on different parabolic warping displacement function[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1933-1940.