Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (1): 81-91    DOI: 10.3785/j.issn.1008-973X.2023.01.009
    
Buoyancy and motion of objects in fluid in centrifugal hypergravity environment
Tian-hao ZHAO1(),Jian-jing ZHENG1,2,*(),Jing-hua LING3,Chang-yu SHI1,Dao-sheng LING1,2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Hypergravity Experiment and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China
3. Zhejiang Huayi Architectural Design Limited Company, Hangzhou 310000, China
Download: HTML     PDF(1827KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The expressions of the test hypergravity potential generated by the earth gravity and the centrifugal hypergravity, the static fluid pressure and the buoyancy of an object in fluid were derived in the rotational non-inertial frame by considering the residual angle of the suspended basket in order to characterize the motion law of object in fluid under the centrifugal hypergravity environment. The motion equation of a rigid object in static fluid in centrifugal model test was established based on Newton’s second law, and its numerical solution program was compiled and verified. The numerical analysis results of sphere motion in fluid show that the residual angle of the suspended basket can be ignored under high centrifugal acceleration. The equipotential surface of test hypergravity is a rotating paraboloid with the centrifuge spindle as the axis. The influence of earth gravity on the equipotential surface is gradually reduced with the increase of centrifugal acceleration. The shape of the equipotential surface tends to be a cylindrical surface. The buoyancy is centripetal and non-uniform, and the influence of the Coriolis force cannot be ignored when the object moves in fluid.



Key wordscentrifugal hypergravity      gravity potential      buoyancy      Coriolis acceleration      trajectory     
Received: 22 February 2022      Published: 17 January 2023
CLC:  TU 411  
Fund:  国家自然科学基金资助项目(51988101)
Corresponding Authors: Jian-jing ZHENG     E-mail: 21912219@zju.edu.cn;zhengjianjing@zju.edu.cn
Cite this article:

Tian-hao ZHAO,Jian-jing ZHENG,Jing-hua LING,Chang-yu SHI,Dao-sheng LING. Buoyancy and motion of objects in fluid in centrifugal hypergravity environment. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 81-91.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.01.009     OR     https://www.zjujournals.com/eng/Y2023/V57/I1/81


离心超重力环境下流体中物体浮力与运动

为了表征离心超重力环境下物体在流体中的运动规律,基于旋转非惯性系,考虑吊篮摆动遗留角的影响,推导由地球常重力和离心超重力共同产生的试验超重力场的重力势、静止流体压力及流体中物体承受流体浮力的表达式. 基于Newton第二定律建立离心模型试验中静止流体内物体运动的控制方程,编制并验证了数值求解程序. 流体中圆球运动的数值分析结果表明,当离心加速度较大时,吊篮摆动遗留角的影响可以忽略. 试验超重力等势面是以离心机主轴为轴线的旋转抛物面,随着离心加速度的增大,等势面形态受地球重力的影响逐渐减小,趋于圆柱面. 物体在流体中所受的浮力具有向心性和非均匀性. 物体在流体中运动时,科氏力的影响不可忽略.


关键词: 离心超重力,  重力势,  浮力,  科氏加速度,  运动轨迹 
Fig.1 Coordinate system of centrifuge
Fig.2 Change of θ with N for ${\text{ }}{\phi _{\rm{G}}} = 1/5{\text{ }}$ and ${\text{ }}{\phi _{\rm{R}}} = 1/3$
Fig.3 Change of θ with $ {\text{ }}{\phi _{\rm{R}}}{\text{ }} $ for N = 5 and $ {\phi _{\rm{G}}} = 1/5 $
Fig.4 Change of εv and εh with R0 for different N
Re CD的表达式
Re < 0.01 ${C_{\rm{D}}} = 1/16+24/{Re}$
0.01< Re ≤20 ${C_{\rm{D} } } = \dfrac{ {24} }{ { {Re} } }(1+0.131 \;5{ {Re} ^{0.82 - 0.05B} })$
20 ≤ Re ≤ 260 ${C_{\rm{D}}} = \dfrac{ {24} }{ { {Re} } }(1+0.193 \;5{ {Re} ^{0.630 \;5} })$
260 ≤ Re ≤ 1500 $\lg {C_{\rm{D}}} = 1.643 \;5 - 0.124 \;2B+0.155 \;8{B^2}$
1.5×103Re≤1.2×104 $\begin{gathered} \lg {C_{\rm{D} } } = - 2.457 \;1+2.555 \;8B - 0.929 \;5{B^2}+ \\ {\text{ } }0.104 \;9{B^3} \\ \end{gathered}$
1.2×104Re≤4.4×104 $\lg {C_{\rm{D}}} = - 1.918 \;1+0.637 \;0B - 0.063 \;6{B^2}$
4.4×104Re≤3.38×105 $\lg {C_{\rm{D}}} = - 4.339 \;0+1.580 \;9B - 0.154 \;6{B^2}$
3.38×105Re≤4×105 ${C_{\rm{D}}} = 29.78 - 5.3B$
4×105Re≤106 ${C_{\rm{D}}} = 0.1B - 0.49$
Re > 10 6 ${C_{\rm{D} } } = 0.19 - { {8 \times { {10}^4} } }/{ { {Re} } }$
Tab.1 CD expression under different Re
Fig.5 Solid falling trajectory with different $ \;{\beta _0} $ for N = 10
Fig.6 Change of $ {\delta _{\rm{r}}} $ with N for different $ \;{\beta _0} $
Fig.7 Change of sedimentation velocity with viscosity coefficient
Fig.8 Sphere trajectory for $ {\alpha _0}{\text{ = }}1 $
Fig.9 Change of f with τ for α0= 1 and ε= 2
Fig.10 Sphere trajectory for $ \;{\beta _0} = \pm 1 $ and $ {\alpha _0}{\text{ = }}{\gamma _0}{\text{ = 0}} $
Fig.11 Sphere trajectory for $ {\gamma _0} = \pm 1 $ and $ {\alpha _0}{\text{ = }}{\beta _0}{\text{ = 0}} $
[1]   PHILLIPS E. De l’equilibre des solides elastiques semblables [M]. Paris: C. R. Academie des Sciences, 1869.
[2]   CANDIA G, MIKOLA R G, SITAR N Seismic response of retaining walls with cohesive backfill: centrifuge model studies[J]. Soil Dynamics and Earthquake Engineering, 2016, 90: 411- 419
doi: 10.1016/j.soildyn.2016.09.013
[3]   ARDIA P, GIORDANO D, SCHMIDT M W A model for the viscosity of rhyolite as a function of H2O-content and pressure: a calibration based on centrifuge piston cylinder experiments[J]. Geochimica et Cosmochimica Acta, 2008, 72 (24): 6103- 6123
doi: 10.1016/j.gca.2008.08.025
[4]   SASSA S, SEKIGUCHI H Wave-induced liquefaction of beds of sand in a centrifuge[J]. Geotechnique, 1999, 49 (5): 621- 638
doi: 10.1680/geot.1999.49.5.621
[5]   孔令刚, 姚宏波, 詹良通, 等 含水率对非饱和土质覆盖层塌陷模式的影响[J]. 浙江大学学报: 工学版, 2017, 51 (5): 847- 855
KONG Ling-gang, YAO Hong-bo, ZHAN Liang-tong, et al Effect of water content on failure modes of evapotranspiration landfill cover[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (5): 847- 855
[6]   何奔, 王欢, 洪义, 等 竖向荷载对黏土地基中单桩水平受荷性能的影响[J]. 浙江大学学报: 工学版, 2016, 50 (7): 1221- 1229
HE Ben, WANG Huan, HONG Yi, et al Effect of vertical load on lateral behavior of single pile in clay[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (7): 1221- 1229
[7]   SUÑOL F, GONZÃLEZ-CINCA R Effects of gravity level on bubble formation and rise in low-viscosity liquids[J]. Physical Review E, 2015, 91 (5): 053009
doi: 10.1103/PhysRevE.91.053009
[8]   马立秋, 张建民, 张武 爆炸离心模型试验研究进展与展望[J]. 岩土力学, 2011, 32 (9): 272- 278
MA Li-qiu, ZHANG Jian-ming, ZHANG Wu Development and prospect for centrifugal blasting modeling[J]. Rock and Soil Mechanics, 2011, 32 (9): 272- 278
doi: 10.16285/j.rsm.2011.09.004
[9]   陈云敏 离心超重力实验: 探索多相介质演变的革命性手段[J]. 浙江大学学报: 工学版, 2020, 54 (4): 631- 632
CHEN Yun-min Centrifugal hypergravity experiment: revolutionary means to explore the evolution of multiphase media[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (4): 631- 632
[10]   FERREIRA R M L, FRANCA M J, LEAL J G A B, et al Mathematical modelling of shallow flows: closure models drawn from grain-scale mechanics of sediment transport and flow hydrodynamics[J]. Canadian Journal of Civil Engineering, 2009, 36 (10): 1605- 1621
doi: 10.1139/L09-033
[11]   康娅娟, 刘少军 深海采矿提升系统研究综述[J]. 机械工程学报, 2021, 57 (20): 232- 243
KANG Ya-juan, LIU Shao-jun Summary of research on lifting system of deep sea mining[J]. Journal of Mechanical Engineering, 2021, 57 (20): 232- 243
doi: 10.3901/JME.2021.20.232
[12]   刘宝镛 全尺寸模型弹水下发射试验的有关问题[J]. 导弹与航天运载技术, 2000, (4): 1- 4
LIU Bao-yong Problems on the underwater launching test of full scale model missile[J]. Missiles and Space Vehicles, 2000, (4): 1- 4
doi: 10.3969/j.issn.1004-7182.2000.04.001
[13]   姜欣. 水库悬浮物的环境特性及其水质影响研究[D]. 大连: 大连理工大学, 2019.
JIANG Xin. Environmental characteristics of suspended solids in reservoirs and their effects on water quality [D]. Dalian: Dalian University of Technology, 2019.
[14]   ZHAO L, GUO Z C, WANG Z, et al Influences of super-gravity field on aluminum grain refining[J]. Metallurgical and Materials Transactions, 2010, 41A (3): 670- 675
[15]   WILSON C. From Kepler to Newton: telling the tale [M]// The foundations of Newtonian scholarship. Singapore: World Scientific Publishing, 2000: 223-242.
[16]   PINES S Uniform representation of the gravitational potential and its derivatives[J]. AIAA Journal, 1973, 11 (11): 1508- 1511
doi: 10.2514/3.50619
[17]   王东明 利用地球重力位模型计算重力和重力梯度[J]. 地球物理学报, 1999, (Supple.1): 108- 114
WANG Dong-ming Computing earth’s gravity and gravity gradient using geopotential model[J]. Chinese Journal Geophysics, 1999, (Supple.1): 108- 114
[18]   KAUFMAN A A, HANSEN R O Gravitational field of the earth[J]. Methods in Geochemistry and Geophysics, 2007, 41: 59- 159
doi: 10.1016/S0076-6895(07)41003-4
[19]   包承纲, 饶锡保 土工离心模型的试验原理[J]. 长江科学院院报, 1998, 15 (2): 1- 3
BAO Cheng-gang, RAO Xi-bao Principle of the geotechnical centrifuge model test[J]. Journal of Yangtze River Scientific Research Institute, 1998, 15 (2): 1- 3
[20]   王巧莎. 超重环境下水波模拟与传播特性研究[D]. 绵阳: 中国工程物理研究院, 2019.
WANG Qiao-sha. Research on simulation and propagation characteristics of water waves in hypergravity environment [D]. Mianyang: China Academy of Engineering Physics, 2019.
[21]   SCHOFIELD A N. An introduction to centrifuge modeling [M]// Centrifuges in soil mechanics. Boca Raton: CRC Press, 2020: 1-9.
[22]   LEI G H, SHI J Physical meanings of kinematics in centrifuge modeling technique[J]. Rock and Soil Mechanics, 2003, 24 (2): 188- 193
[23]   凌道盛, 施昌宇, 郑建靖, 等 离心模型试验物质运动非惯性系效应[J]. 岩土工程学报, 2021, 43 (2): 226- 235
LING Dao-sheng, SHI Chang-yu, ZHENG Jian-jing, et al Non-inertial effects on matter motion in centrifugal model test[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (2): 226- 235
[24]   赵宇, 常胜, 郑建靖, 等 离心模拟超重力场下的雨滴运动轨迹分析[J]. 浙江大学学报: 工学版, 2021, 55 (3): 491- 499
ZHAO Yu, CHANG Sheng, ZHENG Jian-jing, et al Analysis of raindrop trajectory in centrifuge-simulated hypergravity field[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (3): 491- 499
[25]   CAICEDO B, TRISTANCHO J, THOREL L Mathematical and physical modelling of rainfall in centrifuge[J]. International Journal of Physical Modelling in Geotechnics, 2015, 15 (3): 150- 164
doi: 10.1680/jphmg.14.00023
[26]   MAXEMOW S That's a drag: the effects of drag forces[J]. Undergraduate Journal of Mathematical Modeling: One+ Two, 2009, 2 (1): 4
[27]   CLIFT R, GRACE J R, WEBER M E. Bubbles, drops, and particles [M]. New York: Academic Press, 1978.
[1] Zhi-tong TAO,Jian-feng TAO,Cheng-jin QIN,Cheng-liang LIU. Trajectory planning of TBM disc cutter changing robot based on time-jerk optimization[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 1-9.
[2] Meng-qing HONG,Meng DING,Xiu-tao GU,Yu GUO. Fixed time trajectory tracking control for dual-arm space robot[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1168-1174.
[3] Rui YU,Xue-feng XU,Hua ZHOU,Hua-yong YANG. Improved switching-gain adaptation based sliding mode control for trajectory tracking of underactuated unmanned surface vessels[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 436-443.
[4] Ye-he ZHAO,Da-xin LIU,Zhen-yu LIU,Jian-rong TAN. Time-optimal trajectory planning of manipulator based on multi-group competition squirrel search algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2321-2329.
[5] Qun-ping LUO,Min-jian ZHAO,Ming-min ZHAO,Zhi-zhen SU. Modulation intelligent recognition based on phase fusion feature and residual network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1987-1994.
[6] Hao SUN,Kun-lin TANG,Ai-bing JIN,Mei-chen LIU,Shuai-jun CHEN,Mu-ya LI. Experimental study on influence of single coarse particle on shear properties of ore-rock particle system[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2037-2048.
[7] Xiao-chen SONG,Xiao-fan YAO,Shang-jun YE. Trajectory optimization of small supersonic unmanned aerial vehicle based on pseudo-spectral method[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 193-201.
[8] Yu ZHAO,Sheng CHANG,Jian-jing ZHENG,Dao-sheng LING,Teng LIANG. Analysis of raindrop trajectory in centrifuge-simulated hypergravity field[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 491-499.
[9] Lin LI,Ze-hao XUE,Di CAI,Tie ZHANG. Kinematics and gait planning of wall-climbing quadruped robot for pipeline inner wall[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2286-2297.
[10] Yu-qiong WANG,Song GAO,Yu-hai WANG,Yi XU,Dong GUO,Ying-chao ZHOU. Trajectory tracking and stability control of high-speed autonomous vehicle[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1922-1929.
[11] Xiao PAN,Yun-dan YANG,Xin YAO,Lei WU,Shu-hai WANG. Personalized potential route recommendation based on hidden Markov model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1736-1745.
[12] Jie LIU,Xian-zhou DONG,Wei HAN,Xin-wei WANG,Chun LIU,Jun JIA. Trajectory planning for carrier aircraft on deck using Newton Symplectic pseudo-spectral method[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1827-1838.
[13] Yue LIN,Hong-yu LI,Yi-cheng WEN,Yan-chao ZOU,Shao-bo YANG,Xing-fei LI. Buoyancy change rule of deep-sea autonomous profiling float[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1440-1448.
[14] Chuang LIU,Jun LIANG. Vehicle motion trajectory prediction based on attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1156-1163.
[15] Yan-long ZHAO,Xing-fei LI,Shao-bo YANG,Hong-yu LI,Jia-yi XU,Yue LIN. Variable buoyancy system performance for profile buoy “Fuxing”[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1240-1248.