Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (10): 2037-2048    DOI: 10.3785/j.issn.1008-973X.2022.10.015
    
Experimental study on influence of single coarse particle on shear properties of ore-rock particle system
Hao SUN1,2(),Kun-lin TANG1,2,3,Ai-bing JIN1,2,*(),Mei-chen LIU1,2,Shuai-jun CHEN1,2,Mu-ya LI1,2
1. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China
2. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
3. China ENFI Engineering Corporation, Beijing 100038, China
Download: HTML     PDF(2902KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A self-designed ore-rock particle system non-contact shear characteristics monitoring and analysis system was adopted to conduct direct shear tests in order to analyze the influence of single coarse particle with different vertical pressures and different sizes, shapes and positions on the shear strength and migration characteristics of the ore-rock particle system. The research results were as follows. The addition of coarse particles significantly increased the shear strength of the 5-10 mm ore-rock particle system when the shape factor was larger than 0.5, where the coarse to fine particle size ratio ranged from 3.07 to 4.23. The shear strength of the ore-rock particle system was the largest when the coarse particle was at the shear exit, followed by the shear entrance, and the shear strength was the smallest when it was located at the center of the visible surface. The shear strength of ore-rock particle system increased linearly with the increase of vertical pressure within the range of studied values. The shear strength had no significant change with the increase of coarse particle shape factor when the shape factor was less than 0.5. The shear strength increased slowly with the increase of coarse particle shape factor when shape factor was greater than or equal to 0.5. The effects of vertical pressure on the shear strength of ore-rock particle system were more significant compared with the shape of coarse particle. The migration trajectories of fine particles around under the influence of different coarse particle size, shape and vertical pressure all correspond to Boltzmann distribution within the range of values studied. The vertical displacement of fine particles around coarse particle will significantly increase with the increase of coarse particle shape factor, and decrease with the increase of vertical pressure. The increase of coarse particle shape factor and vertical pressure will improve the order of fine particle migration trajectory.



Key wordscoarse particle      ore-rock particle system      direct shear test      shear strength      migration trajectory      image recognition     
Received: 24 December 2021      Published: 25 October 2022
CLC:  TD 804  
Fund:  国家自然科学基金资助项目(52004017, 52174106);中央高校基本科研业务费专项资金资助项目(FRF-IDRY-20-021)
Corresponding Authors: Ai-bing JIN     E-mail: sunhao2019@ustb.edu.cn;jinaibing@ustb.edu.cn
Cite this article:

Hao SUN,Kun-lin TANG,Ai-bing JIN,Mei-chen LIU,Shuai-jun CHEN,Mu-ya LI. Experimental study on influence of single coarse particle on shear properties of ore-rock particle system. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2037-2048.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.10.015     OR     https://www.zjujournals.com/eng/Y2022/V56/I10/2037


单一粗颗粒对矿岩颗粒体系剪切特性影响试验

为了探究不同垂直压力以及不同粒径、形状和位置的单一粗颗粒对矿岩颗粒体系抗剪强度和运移特性的影响,采用自主设计的矿岩颗粒体系非接触式剪切特性监测与分析系统开展直接剪切试验. 研究结果表明,当形状因子>0.5时,添加粗颗粒会显著增加5~10 mm矿岩颗粒体系的抗剪强度,粗细颗粒粒径比为3.07~4.23. 粗颗粒在剪出口时的矿岩颗粒体系抗剪强度最大,剪入口次之,位于可视面中心位置时的抗剪强度最小. 在所研究的取值范围内,矿岩颗粒体系抗剪强度随着垂直压力的增加呈线性增长规律. 当形状因子<0.5时,随着粗颗粒形状因子的增加,抗剪强度无显著变化,当形状因子≥0.5时,随着粗颗粒形状因子的增加,抗剪强度缓慢增加. 相较于粗颗粒形状,垂直压力对矿岩颗粒体系抗剪强度的影响更显著. 在所研究的取值范围内,不同粗颗粒粒径、形状和垂直压力影响下的四周细颗粒运移轨迹均符合Boltzmann分布. 粗颗粒四周细颗粒的垂直位移随着粗颗粒形状因子的增加会显著增加,随着垂直压力的增加,则会降低四周细颗粒的垂直位移;粗颗粒形状因子和垂直压力的二者增加均会提高细颗粒运移轨迹方向的有序程度.


关键词: 粗颗粒,  矿岩颗粒体系,  直剪试验,  抗剪强度,  运移轨迹,  图像识别 
Fig.1 Shear device and non-contact shear measurement and analysis system
Fig.2 Scheme of ore-rock particles and coarse particles
序号 研究内容 dc/df1 rv pv/kPa 粗颗粒位置
A-1 粗细颗粒粒径比对矿岩颗粒体系抗剪强度的影响 1.00 0.745 100 可视面中心
A-2 2.10
A-3 3.07
A-4 4.23
A-5 5.11
A-6 6.07
A-7 7.04
B-1 保持尺寸不变,探究颗粒形状和垂直压力对矿岩颗粒体系抗剪强度和粗细颗粒运移特性的影响 4.23 0.201 100 可视面中心
B-2 0.304 100
B-3 0.409 100
B-4 0.507 100
B-5 0.201 200
B-6 0.304 200
B-7 0.409 200
B-8 0.507 200
B-9 0.201 300
B-10 0.304 300
B-11 0.409 300
B-12 0.507 100
B-13 0.540 100
B-14 0.745 100
B-15 0.939 100
B-16 0.540 200
B-17 0.745 200
B-18 0.939 200
B-19 0.540 300
B-20 0.745 300
B-21 0.939 300
C-1 保持形状、压力尺寸不变,探究粗颗粒布设位置对矿岩颗粒体系抗剪强度和粗细颗粒运移特性的影响 4.23 0.745 100 可视面中心左侧75 mm
C-2 可视面中心
C-3 可视面中心右侧75 mm
C-4 可视面中心上侧50 mm
C-5 可视面中心下侧50 mm
C-6 可视面中心左侧75 mm上侧50 mm
C-7 可视面中心右侧75 mm上侧50 mm
C-8 可视面中心左侧75 mm下侧50 mm
C-9 可视面中心右侧75 mm下侧50 mm
Tab.1 Experimental scheme of influence of coarse particle on shear properties of ore-rock particle system
Fig.3 Layout scheme of coarse particle
Fig.4 Shear strengths of ore-rock particle system under influence of different coarse particle sizes
Fig.5 Shear strengths under influence of different shape of coarse particle and vertical pressure
Fig.6 Shear strengths under influence of coarse particle position under 100 kPa vertical pressure
Fig.7 Particle trajectory tracking process
Fig.8 Effect of different shape factors and vertical pressure on coarse particle displacement
Fig.9 Migration trajectory and shear strength correlation of coarse particle at different positions
Fig.10 Migration trajectories and fitting curves of fine particles
Fig.11 Effect of different shape factors on fine particles migration trajectories around coarse particle
Fig.12 Effects of different vertical pressure on fine particle migration trajectories around coarse particle
[1]   KOU Bin-quan, CAO Yi-xin, LI Jin-dong, et al Granular materials flow like complex fluids[J]. Nature, 2017, 551: 360- 363
doi: 10.1038/nature24062
[2]   孙其诚, 刘晓星, 张国华, 等 密集颗粒物质的介观结构[J]. 力学进展, 2017, 47: 263- 308
SUN Qi-cheng, LIU Xiao-xing, ZHANG Guo-hua, et al Mesoscopic structure of dense granular matter[J]. Progress in Mechanics, 2017, 47: 263- 308
doi: 10.6052/1000-0992-16-021
[3]   吴顺川, 金爱兵, 刘洋. 边坡工程[M]. 北京: 冶金工业出版社, 2017.
[4]   王光进, 杨春和, 张超, 等 超高排土场的粒径分级及其边坡稳定性分析研究[J]. 岩土力学, 2011, 32 (3): 905- 913
WANG Guang-jin, YANG Chun-he, ZHANG Chao, et al Grain size classification of ultra-high dumping site and analysis of slope stability[J]. Rock and Soil Mechanics, 2011, 32 (3): 905- 913
doi: 10.3969/j.issn.1000-7598.2011.03.044
[5]   李鹏越, 舒继森, 韩流, 等 不同粒径块体在散体边坡上的滚落规律研究[J]. 化工矿物与加工, 2015, 44 (3): 44- 48
LI Peng-yue, SHU Ji-sen, HAN Liu, et al Research on the rolling law of blocks with different particle sizes on granular slope[J]. Industrial Minerals and Processing, 2015, 44 (3): 44- 48
[6]   赵洪宝, 魏子强, 王涛, 等 考虑块体组成的排土场边坡对振动作用响应模拟[J]. 煤炭学报, 2019, 44 (Supple.2): 544- 552
ZHAO Hong-bao, WEI Zi-qiang, WANG Tao, et al Simulation of response to vibration of dumps slope composed of blocks[J]. Journal of China Coal Society, 2019, 44 (Supple.2): 544- 552
[7]   孙壮壮, 马刚, 周伟, 等 颗粒形状对堆石颗粒破碎强度尺寸效应的影响[J]. 岩土力学, 2021, 42 (2): 430- 438
SUN Zhuang-zhuang, MA Gang, ZHOU Wei, et al The influence of particle shape on the size effect of rockfill particle crushing strength[J]. Rock and Soil Mechanics, 2021, 42 (2): 430- 438
[8]   YANG Han, XU Wen-jie, SUN Qi-cheng, et al Study on the meso-structure development in direct shear tests of a granular material[J]. Powder Technology, 2017, 314: 129- 139
doi: 10.1016/j.powtec.2016.12.084
[9]   杨涵, 徐文杰, 张启斌 散体颗粒介质变形局部化宏-细观机制研究[J]. 岩石力学与工程学报, 2015, 34 (8): 1692- 1701
YANG Han, XU Wen-jie, ZHANG Qi-bin Macro- and meso-mechanism of strain localization in granular material[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (8): 1692- 1701
[10]   薛亚东, 刘忠强, 黄宏伟 砂砾石混合物抗剪强度特性试验研究[J]. 土木建筑与环境工程, 2012, 34 (6): 75- 79
XUE Ya-dong, LIU Zhong-qiang, HUANG Hong-wei Experimental study on shear strength characteristics of sand gravel mixture[J]. Civil Architecture and Environmental Engineering, 2012, 34 (6): 75- 79
[11]   赵阳, 周辉, 冯夏庭, 等 不同因素影响下层间错动带颗粒破碎和剪切强度特性试验研究[J]. 岩土力学, 2013, 34 (1): 13- 22
ZHAO Yang, ZHOU Hui, FENG Xia-ting, et al Experimental study on particle breaking and shear strength characteristics of lower interlayer dislocation zone affected by different factors[J]. Rock and Soil Mechanics, 2013, 34 (1): 13- 22
doi: 10.16285/j.rsm.2013.01.008
[12]   WEI Hou-zhen, LI Xiao-xiao, ZHANG Shuo-dong, et al Influence of particle breakage on drained shear strength of calcareous sands[J]. International Journal of Geomechanics, 2021, 21 (7): 04021118
doi: 10.1061/(ASCE)GM.1943-5622.0002078
[13]   华文俊, 肖源杰, 王萌, 等 级配与颗粒形状对复杂堆积体路基填料剪切性能影响的离散元模拟研究[J]. 中南大学学报: 自然科学版, 2021, 52 (7): 2332- 2348
HUA Wen-jun, XIAO Yuan-jie, WANG Meng, et al Discrete element simulation study on the influence of gradation and particle shape on the shear performance of complex accumulation subgrade filler[J]. Journal of Central South University: Natural Science Edition, 2021, 52 (7): 2332- 2348
[14]   柴维, 龙志林, 旷杜敏, 等 直剪剪切速率对钙质砂强度及变形特征的影响[J]. 岩土力学, 2019, 40 (Supple.1): 359- 366
CHAI Wei, LONG Zhi-lin, KUANG Du-min, et al Influence of direct shear rate on strength and deformation characteristics of calcareous sand[J]. Rock and Soil Mechanics, 2019, 40 (Supple.1): 359- 366
[15]   赵晓彦, 万宇豪, 张肖兵 汶马高速公路千枚岩堆积体岩块定向性试验研究[J]. 岩土力学, 2020, 41 (1): 175- 184
ZHAO Xiao-yan, WAN Yu-hao, ZHANG Xiao-bing Experimental study on the orientation of phyllite deposits on Wen-Ma Expressway[J]. Rock and Soil Mechanics, 2020, 41 (1): 175- 184
[16]   成浩, 王晅, 张家生, 等 颗粒粒度与级配对碎石料与结构接触面剪切特性的影响[J]. 中南大学学报: 自然科学版, 2018, 49 (4): 925- 932
CHENG Hao, WANG Xuan, ZHANG Jia-sheng, et al The influence of particle size and gradation on the shear characteristics of the interface between crushed stone and structure[J]. Journal of Central South University: Natural Science Edition, 2018, 49 (4): 925- 932
[17]   林呈祥, 钟世英, 凌道盛 模拟月壤颗粒形状特征及其对抗剪强度影响分析[J]. 东北大学学报: 自然科学版, 2016, 37 (11): 1640- 1644
LIN Cheng-xiang, ZHONG Shi-ying, LING Dao-sheng Simulated lunar soil particle shape characteristics and analysis of its influence on shear strength[J]. Journal of Northeastern University: Natural Science Edition, 2016, 37 (11): 1640- 1644
[18]   严颖, 季顺迎 颗粒形态对离散介质剪切强度的影响[J]. 岩土力学, 2009, 30 (Supple.1): 225- 230
YAN Ying, JI Shun-ying The influence of particle shape on the shear strength of discrete media[J]. Rock and Soil Mechanics, 2009, 30 (Supple.1): 225- 230
doi: 10.3969/j.issn.1000-7598.2009.z1.045
[19]   李坤, 王玉峰, 程谦恭, 等 分形粒径分布对颗粒流粒径分选的影响规律[J]. 岩石力学与工程学报, 2021, 40 (2): 330- 343
LI Kun, WANG Yu-feng, CHENG Qian-gong, et al The influence of fractal particle size distribution on particle flow particle size sorting[J]. Journal of Rock Mechanics and Engineering, 2021, 40 (2): 330- 343
doi: 10.13722/j.cnki.jrme.2020.0748
[20]   金爱兵, 陈帅军, 孙浩, 等 基于不均匀粒径分布的颗粒穿流特性[J]. 中南大学学报: 自然科学版, 2020, 51 (6): 1673- 1681
JIN Ai-bing, CHEN Shuai-jun, SUN Hao, et al Particle cross flow characteristics based on uneven particle size distribution[J]. Journal of Central South University: Edition of Natural Science, 2020, 51 (6): 1673- 1681
[21]   CUI L, O'SULLIVAN C Exploring the macro-and micro-scale response of an idealised granular material in the direct shear apparatus[J]. Géotechnique, 2006, 56 (7): 455- 468
[22]   ZHANG L, THORNTON C A numerical examination of the direct shear test[J]. Géotechnique, 2007, 57 (4): 343- 354
[23]   CHEN J, GAO R, LIU Y, et al Numerical exploration of the behavior of coal-fouled ballast subjected to direct shear test[J]. Construction and Building Materials, 2021, 273: 121927
doi: 10.1016/j.conbuildmat.2020.121927
[24]   LEI Dong, HUANG Jin-feng, XU Wen-xiang, et al Deformation analysis of shear band in granular materials via a robust plane shear test and numerical simulation[J]. Powder Technology, 2018, 323: 385- 392
doi: 10.1016/j.powtec.2017.10.027
[25]   孔亮, 陈凡秀, 李杰 基于数字图像相关法的砂土细观直接剪切试验及其颗粒流数值模拟[J]. 岩土力学, 2013, 34 (10): 2971- 2978
KONG Liang, CHEN Fan-xiu, LI Jie Meso scale direct shear test of sand and numerical simulation of particle flow based on digital image correlation method[J]. Rock and Soil Mechanics, 2013, 34 (10): 2971- 2978
[26]   JING L, KWOK C Y, LEUNG Y F Micromechanical origin of particle size segregation[J]. Physical Review Letters, 2017, 118 (11): 118001
doi: 10.1103/PhysRevLett.118.118001
[27]   XU Yu-peng, GAO Xi, LI Ting-wen Numerical study of the bi-disperse particles segregation inside a spherical tumbler with discrete element method (DEM)[J]. Computers and Mathematics with Applications, 2021, 81: 588- 601
doi: 10.1016/j.camwa.2019.07.018
[28]   JOHN M N T G, PARMESH G, PETER K Particle-size segregation in dense granular avalanches[J]. Comptes Rendus Physique, 2015, 16 (1): 73- 85
doi: 10.1016/j.crhy.2015.01.004
[29]   TREWHELA T, ANCEY C, GRAY J M N T An experimental scaling law for particle-size segregation in dense granular flows[J]. Journal of Fluid Mechanics, 2021, 916 (455): A55
[30]   TREWHELA T, GRAY J, ANCEY C Large particle segregation in two-dimensional sheared granular flows[J]. Physical Review Fluids, 2021, 6 (5): 54302
doi: 10.1103/PhysRevFluids.6.054302
[31]   何银枝, 谢跃波, 吴淑瑛 应用Image-pro plus简易无创分析新生儿黄疸颜色变化的临床研究[J]. 基层医学论坛, 2021, 25 (2): 168- 170
HE Yin-zhi, XIE Yue-bo, WU Shu-ying Clinical study on noninvasive analysis of color change of neonatal jaundice with Image-pro plus[J]. Basic Medical Forum, 2021, 25 (2): 168- 170
[32]   LINDSAY D J, YAMAGUCHI A, GROSSMANN M M, et al Vertical profiles of marine particulates: a step towards global scale comparisons using an autonomous visual Plankton recorder[J]. Bulletin of the Plankton Society of Japan, 2014, 61 (1): 72- 81
[33]   CHEN Qi-lin, LI Wei, CHEN Zhu Analysis of microstructure characteristics of high sulfur steel based on computer image processing technology[J]. Results in Physics, 2019, 12: 392- 397
doi: 10.1016/j.rinp.2018.10.037
[34]   刘钢, 赵明志, 陆瑞, 等 碎石颗粒形态特征及其与堆积特性的关系[J]. 岩土力学, 2019, 40 (12): 4644- 4651
LIU Gang, ZHAO Ming-zhi, LU Rui, et al The morphological characteristics of gravel particles and their relationship with accumulation characteristics[J]. Rock and Soil Mechanics, 2019, 40 (12): 4644- 4651
[35]   刘钢, 陆瑞, 赵明志, 等 基于椭球模型的圆砾堆积特性分析[J]. 岩土力学, 2019, 40 (11): 4371- 4379
LIU Gang, LU Rui, ZHAO Ming-zhi, et al Analysis of round gravel accumulation characteristics based on ellipsoid model[J]. Rock and Soil Mechanics, 2019, 40 (11): 4371- 4379
[36]   HASHIM M. Particle percolation in block caving mines [D]. Sydney: University of New South Wales, 2011.
[37]   SENYUR M G The fabric of coal-mine refuse as backfilling material and its relation to grain-size distribution parameters[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1998, 98 (1): 39- 47
[38]   蒋明镜, 王富周, 朱合华 单粒组密砂剪切带的直剪试验离散元数值分析[J]. 岩土力学, 2010, 31 (1): 253- 257
JIANG Ming-jing, WANG Fu-zhou, ZHU He-hua Discrete element numerical analysis of the direct shear test of the single-grain dense sand shear band[J]. Rock and Soil Mechanics, 2010, 31 (1): 253- 257
doi: 10.3969/j.issn.1000-7598.2010.01.043
[1] Tao GONG,Kai-fu LIU,Xin-yu XIE,Chun-tai XU,Yang LOU,Ling-wei ZHENG. Shear characteristics of interface based on subloading-friction model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1328-1335, 1352.
[2] Xiao-chen JU,Xin-xin ZHAO,Sheng-sheng QIAN. Self-attention mechanism based bridge bolt detection algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 901-908.
[3] Yang XUE,Yi-ping WU,Fa-sheng MIAO,Lin-wei LI. Back analysis of shear strength parameters of sliding surface by using combination method of random field and Bayes theory[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1118-1127.
[4] Ying-jie ZHENG,Song-rong WU,Ruo-yu WEI,Zhen-wei TU,Jin LIAO,Dong LIU. Metro location point matching and false alarm elimination based on FCM algorithm of target image[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 586-593.
[5] Xuan-chen DING,Yu-min CHEN,Xin-lei ZHANG. Experimental study on microbial reinforced calcareous sand using ring shear apparatus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1690-1696.
[6] XU Hui, MIAO Jian-dong, CHEN Ping, ZHAN Liang-tong, LUO Xiao-yong. Measurements of geotechnical properties of municipal solid waste incineration fly ash stabilized by chemical reagents[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 1-10.
[7] WANG Qiang, JIN Ling-zhi, CAO Xia, LV Hai-bo. Experimental study on shear performance of reactive powder concrete beam[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 922-930.
[8] LI Zhi-ning, HAN Tong-chun, DOU Hong-qiang, QIU Zi-yi. Analysis of torque on helical soil nail drilling into strata[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1426-1433.
[9] WANG Guo-qing, CHENG Zhuang, WANG Zhen-yu, CHEN Feng, ZHANG Yi. Shear capacity of composite member of high strength grouted cement paste and steel plate with shear keys[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1282-1287.
[10] ZHANG Cheng cheng, ZHU Hong hu, TANG Chao sheng, SHI Bin. Modeling of progressive interface failure of fiber reinforced soil[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1952-1959.
[11] ZHANG Zhen-ying, YAN Li-jun. Correlation properties of the deformation and the shear strength of fresh municipal solid waste[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1962-1967.
[12] ZHONG Shi-ying, LING Dao-sheng , WU Xiao-jun, CHEN Yun-min. Review on geotechnical behavior of lunar soil[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(5): 777-784.