Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (12): 2286-2297    DOI: 10.3785/j.issn.1008-973X.2021.12.008
    
Kinematics and gait planning of wall-climbing quadruped robot for pipeline inner wall
Lin LI1(),Ze-hao XUE1,Di CAI2,Tie ZHANG1,*()
1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
2. Guangzhou Power Supply Bureau Limited Company, Guangzhou 510620, China
Download: HTML     PDF(2298KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A wall-climbing quadruped robot for pipeline inner wall with negative pressure adsorption was investigated, which was used to detect the inside of gas insulated switchgear (GIS). The kinematics of the legs and body of the robot was analyzed, and an improved Newton iteration method was used to solve the complex problem of the body’s forward kinematics. The gait planning of the robot climbing along the axial and circumferential direction of the pipeline was carried out, and a zero-impact trajectory planning method was proposed. Adams was applied for motion simulation, and the omnidirectional wall climbing experiments of horizontal and vertical pipelines were carried out with the robot prototype. Results showed that the robot’s trajectory was consistent with the planned gait, and there was no sudden change in velocity and acceleration during the movement. The movement process was stable without noticeable impact. The correctness of the kinematic model and the rationality of the planned gait were verified. The robot was applied to the actual detection of the GIS pipeline, and the stable wall climbing motion and detection under different working conditions were realized.



Key wordspipeline robot      wall-climbing quadruped robot      kinematics      gait analysis      trajectory planning     
Received: 31 January 2021      Published: 31 December 2021
CLC:  TP 242  
Fund:  广东省科技计划资助项目(2019B040402006);气体绝缘金属封闭开关内部检测壁虎机器人研发及应用(GZHKJXM20170068)
Corresponding Authors: Tie ZHANG     E-mail: linli@scut.edu.cn;merobot@scut.edu.cn
Cite this article:

Lin LI,Ze-hao XUE,Di CAI,Tie ZHANG. Kinematics and gait planning of wall-climbing quadruped robot for pipeline inner wall. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2286-2297.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.12.008     OR     https://www.zjujournals.com/eng/Y2021/V55/I12/2286


管道内壁四足爬壁机器人的运动学与步态规划

研究用于检测气体绝缘金属封闭开关(GIS)内部的负压吸附管道内壁四足爬壁机器人. 分别对机器人的腿部和机身进行运动学分析,采用改进的牛顿迭代法解决机身正运动学求解困难的问题. 对机器人沿管道轴向和圆周方向的爬壁运动进行步态规划,提出运动过程零冲击的轨迹规划方法. 使用Adams进行运动仿真,并在四足爬壁机器人样机上进行水平和垂直管道的全方位爬壁实验. 结果表明:机器人的运动轨迹与所规划的步态一致,运动过程中速度与加速度无突变,运动平稳,无明显冲击,运动学模型的正确性和所规划步态的合理性得到验证. 在GIS管道的实际检测应用中,实现机器人在不同工况下的平稳爬壁运动与检测.


关键词: 管道机器人,  四足爬壁机器人,  运动学,  步态分析,  轨迹规划 
Fig.1 Mechanical structure of wall-climbing robot
Fig.2 Analysis model of robot surface adaptability
$i$ ${a_{i - 1}}$ ${\alpha _{i - 1}}$ ${d_i}$ ${\theta _i}$
1 0 0 0 ${\theta _1}$
2 0 90° 0 ${\theta _{\text{2}}}$
3 ${L_1}$ 0 0 ${\theta _{\text{3}}}$
4(末端) ${L_2}$ 0 $ - d$ 0
Tab.1 D-H parameters of robot series leg structure
Fig.3 Kinematics modeling of wall-climbing robot
Fig.4 Axial gait planning of robot
Fig.5 Circular gait planning of robot
Fig.6 Schematic diagram of axial gait analysis
Fig.7 Schematic diagram of circular gait analysis
编号 $\eta_1 $ $\eta_2 $ $\eta_3 $
一号腿 $[ - {60^ \circ },{60^ \circ }]$ $[ - {60^ \circ },{60^ \circ }]$ $[{30^ \circ },{150^ \circ }]$
二号腿 $[ - {60^ \circ },{60^ \circ }]$ $[{120^ \circ },{240^ \circ }]$ $[ - {150^ \circ }, - {30^ \circ }]$
三号腿 $[ - {60^ \circ },{60^ \circ }]$ $[ - {60^ \circ },{60^ \circ }]$ $[ - {150^ \circ }, - {30^ \circ }]$
四号腿 $[ - {60^ \circ },{60^ \circ }]$ $[{120^ \circ },{240^ \circ }]$ $[{30^ \circ },{150^ \circ }]$
Tab.2 Joint angle limit of robot
Fig.8 Trajectory curve of robot
Fig.9 Joint angle, angular velocity and angular acceleration of leg one by zero impact planning
Fig.10 Joint angle, angular velocity and angular acceleration of leg one by cubic spline interpolation
Fig.11 Structure diagram of control system
Fig.12 Wall-climbing experiment of vertical pipeline
Fig.13 Wall-climbing experiment of horizontal pipeline
Fig.14 Actual joint angle of leg one
Fig.15 Trajectory error analysis of leg one
Fig.16 Acceleration and attitude change of body
Fig.17 Experiment of robot in GIS pipeline
Fig.18 Acceleration curve of body in different pipelines
[1]   LI Z , WANG Q Z , LI J , et al. A new approach to classification of devices and its application to classification of in-pipe robots [C]// IEEE Conference on Industrial Electronics and Applications. Hefei: IEEE, 2016: 1426-1431.
[2]   ROH S, CHOI H Differential-drive in-pipe robot for moving inside urban gas pipelines[J]. IEEE Transactions on Robotics, 2005, 21 (1): 1- 17
doi: 10.1109/TRO.2004.838000
[3]   RODRIGUE H, WANG W, HAN M W, et al An overview of shape memory alloy-coupled actuators and robots[J]. Soft Robotics, 2017, 4 (1): 3- 15
doi: 10.1089/soro.2016.0008
[4]   BHADORIYA A, GUPTA V K, MUKHERJEE S Development of in-pipe inspection robot[J]. Materials Today: Proceedings, 2018, 5 (9): 20769- 20776
doi: 10.1016/j.matpr.2018.06.406
[5]   PARK J, HYUN D, CHO W H, et al Normal-force control for an in-pipe robot according to the inclination of pipelines[J]. IEEE Transactions on Industrial Electronics, 2011, 58 (12): 5304- 5310
doi: 10.1109/TIE.2010.2095392
[6]   唐德威, 李庆凯, 梁涛, 等 三轴差动式管道机器人机械自适应驱动技术[J]. 机械工程学报, 2008, 44 (9): 128- 133
TANG De-wei, LI Qing-kai, LIANG Tao, et al Mechanical self-adaptive drive technology of triaxial differential pipe-robot[J]. Chinese Journal of Mechanical Engineering, 2008, 44 (9): 128- 133
doi: 10.3321/j.issn:0577-6686.2008.09.022
[7]   CISZEWSKI M, BURATOWSKI T, GIERGIEL M, et al Virtual prototyping, design and analysis of an in-pipe inspection mobile robot[J]. Journal of Theoretical and Applied Mechanics, 2014, 52 (2): 417- 429
[8]   BERNS K , ILG W , CORDES S , et al. Multi-joint robot for autonomous sewer inspection [C]// Proceedings 2000 ICRA. Millennium Conference. San Francisco: IEEE, 2002: 1701-1706.
[9]   李杰超, 曹力科, 肖晓晖 轮式磁吸附超声检测爬壁机器人的设计与吸附稳定性分析[J]. 中南大学学报:自然科学版, 2019, 50 (12): 2989- 2997
LI Jie-chao, CAO Li-ke, XIAO Xiao-hui Design and adsorption stability analysis of wall climbing robot based on wheeled magnetic adsorption for ultrasonic detection[J]. Journal of Central South University: Science and Technology, 2019, 50 (12): 2989- 2997
doi: 10.11817/j.issn.1672-7207.2019.12.008
[10]   宋伟, 姜红建, 王滔, 等 爬壁机器人磁吸附组件优化设计与试验研究[J]. 浙江大学学报:工学版, 2018, 52 (10): 1837- 1844
SONG Wei, JIANG Hong-jian, WANG Tao, et al Optimization design and experimental research on magnetic components for wall-climbing robot[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (10): 1837- 1844
doi: 10.3785/j.issn.1008-973X.2018.10.001
[11]   刘泉, 陈志华 具有良好壁面过渡能力的新型爬壁机器人动力学建模与分析[J]. 机床与液压, 2018, 46 (23): 1- 5
LIU Quan, CHEN Zhi-hua Dynamic modeling and analysis of new climbing robot with good wall transition capability[J]. Machine Tool and Hydraulics, 2018, 46 (23): 1- 5
doi: 10.3969/j.issn.1001-3881.2018.23.001
[12]   UNVER O, UNERI A, AYDEMIR A, et al. Geckobot: a gecko inspired climbing robot using elastomer adhesives [C]// Proceedings 2006 IEEE International Conference on Robotics and Automation. Orlando: IEEE, 2006: 2029-2335.
[13]   ZHANG L, MA S G, INOUE K, et al. Omni-directional walking of a quadruped robot with optimal body postures on a slope [C]// Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona: IEEE, 2005: 2976-2981.
[14]   BI Z M, ZHANG W J, CHEN I M, et al Automated geneartion of the D–H parameters for configuration design of modular manipulators[J]. Robotics and Computer-Integrated Manufacturing, 2007, 23 (5): 553- 562
doi: 10.1016/j.rcim.2006.02.014
[15]   GÜLHAN M M, ERBATUR K Kinematic arrangement optimization of a quadruped robot with genetic algorithms[J]. Measurement and Control, 2018, 51 (9/10): 406- 416
[16]   CHEN X D, WATANABE K, IZUMI K Kinematic solution of a quadruped walking robot-posture analysis of TITAN-VIII[J]. IFAC Proceedings Volumes, 1999, 32 (2): 827- 832
doi: 10.1016/S1474-6670(17)56140-6
[17]   KANG T, KIM H, SON T, et al. Design of quadruped walking and climbing robot [C]// Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2003: 619-624.
[18]   NAM W, SEO T W, KIM B, et al Kinematic analysis and experimental verification on the locomotion of gecko[J]. Journal of Bionic Engineering, 2009, 6 (3): 246- 254
doi: 10.1016/S1672-6529(08)60121-3
[19]   SHKOLNIK A, TEDRAKE R. Inverse kinematics for a point-foot quadruped robot with dynamic redundancy resolution [C]// Proceedings 2007 IEEE International Conference on Robotics and Automation. Roma: IEEE, 2007: 4331-4336.
[20]   CAMPA R, BERNAL J, SOTO I. Kinematic modeling and control of the hexapod parallel robot [C]// 2016 American Control Conference. Boston: IEEE, 2016: 1203-1208.
[21]   HOWARD D, ZHANG S J, SANGER D J Kinematic analysis of a walking machine[J]. Mathematics and Computers in Simulation, 1996, 41 (5/6): 525- 538
[22]   阮鹏, 俞志伟, 张昊, 等 基于ADAMS的仿壁虎机器人步态规划及仿真[J]. 机器人, 2010, 32 (4): 499- 504
RUAN Peng, YU Zhi-wei, ZHANG Hao, et al Gait planning and simulation of gecko inspired robot based on ADAMS[J]. ROBOT, 2010, 32 (4): 499- 504
doi: 10.3724/SP.J.1218.2010.00499
[23]   SON D H, JEON D S, NAM W C, DONGHOON, et al Gait planning based on kinematics for a quadruped gecko model with redundancy[J]. Robotics and Autonomous Systems, 2010, 58 (5): 648- 656
doi: 10.1016/j.robot.2009.11.009
[24]   GUAN Y, ZHU H, WU W, et al A modular biped wall-climbing robot with high mobility and manipulating function[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18 (6): 1787- 1798
doi: 10.1109/TMECH.2012.2213303
[25]   GHOSH S K Introduction to robotics: mechanics and control[J]. Journal of Materials Processing Technology, 1991, 25 (2): 239- 240
doi: 10.1016/0924-0136(91)90096-W
[26]   CHOI H B, KONNO A, UCHIYAMA M Closed-form forward kinematics solutions of a 4-DOF parallel robot[J]. International Journal of Control, Automation and Systems, 2009, 7 (5): 858- 864
doi: 10.1007/s12555-009-0520-1
[27]   ONANAYE A S Nonlinear programming: theories and algorithms of some unconstrained optimization methods (steepest descent and Newton's method)[J]. International Journal of Engineering and Management Research, 2020, 10 (2): 1- 12
[28]   JIANG Z L A new algorithm for computing the inverse and generalized inverse of the scaled factor circulant matrix[J]. Journal of Computational Mathematics, 2008, 26 (1): 112- 122
[29]   陈金平, 贺昱曜, 巨永锋, 等. 三电平逆变器SHEPWM牛顿下山法求解研究[J]. 电力电子技术, 2013, 47(9): 8-10.
CHEN Jin-ping , HE Yu-yao , JU Yong-feng , et al. SHEWPM of three-level inverter based on newton downhill method [J], Power Electronics , 2013, 47(9): 8-10.
[30]   LI B, LI Y, RONG X. Locomotion planning and performance analysis of quadruped robot based on ADAMS and MATLAB co-simulation [C]// Proceedings of the 32nd Chinese Control Conference. Xi'an: IEEE, 2013: 5914-5919.
[1] Xiao-chen SONG,Xiao-fan YAO,Shang-jun YE. Trajectory optimization of small supersonic unmanned aerial vehicle based on pseudo-spectral method[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 193-201.
[2] Yuan CHEN,Deng-hui GUO,Li-xia TIAN. Design and modeling of wire-driven rigid-flexible parallel mechanism for wave compensation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 810-822.
[3] Jie LIU,Xian-zhou DONG,Wei HAN,Xin-wei WANG,Chun LIU,Jun JIA. Trajectory planning for carrier aircraft on deck using Newton Symplectic pseudo-spectral method[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1827-1838.
[4] Yan-biao LI,Hang ZHENG,Meng-ru XU,Yi-qin LUO,Peng SUN. Multi-target parameters of performance optimization for 5-PSS/UPU parallel mechanism[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 654-663.
[5] QIN Chao, LIANG Xi-feng, LU Jie, PENG Ming, JIN Chao-qi. Trajectory planning and simulation for 7-DoF tomato harvesting manipulator[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1260-1266.
[6] GAO De-dong, LI Qiang, LEI Yong, XU Fei, BAI Hui-quan. Geometric approximation approach based research on kinematics of bevel-tip flexible needles[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 706-713.
[7] WANG Ming-dou, TAO Jian-feng, QIN Cheng-jin, LIU Cheng-liang. Trajectory planning for segment erector based on optimal space allowance[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 453-460.
[8] QIAN Long hao, HU Shi qiang, YANG Yong sheng. Analytical inverse kinematics algorithm for double-octahedral variable geometry truss manipulators[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 75-81.
[9] LIU Xiang qi, MENG Zhen, NI Jing, ZHU Ze fei. Trajectory planning algorithm for hydraulic servo manipulator of three freedom[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1776-1782.
[10] LI Wei, ZHAO Zhi gang, SHI Guang tian, MENG Jia dong. Solutions of kinematics and dynamics for parallel cable driven system with multi robots[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1916-1923.
[11] CHEN Qing-cheng, ZHU Shi-qiang, WANG Xuan-yin, ZHANG Xue-qun. Inverse kinematics sub-problem solution algorithm for serial robot based on screw theory[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 8-14.
[12] AI Qing-lin, ZU Shun-jiang, XU Fang. Review of kinematics and singularity of parallel manipulator[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1345-1359.
[13] WANG Hui-fang, ZHU Shi-qiang, WU Wen-xiang. INSGA-Ⅱ based multi-objective trajectory planning for manipulators[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 622-628.
[14] Qi lei, JIN Wen-guang, GENG Wei-dong. Human motion capture using wireless inertial sensors[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 280-285.
[15] XU Jing-hua, ZHANG Shu-you, YI Guo-dong, TU Li, GUANG Yao. Object variation oriented kinematics optimization design
for manipulator
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(2): 209-216.