|
|
Modulation intelligent recognition based on phase fusion feature and residual network |
Qun-ping LUO( ),Min-jian ZHAO,Ming-min ZHAO*( ),Zhi-zhen SU |
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310013, China |
|
|
Abstract An intelligent signal modulation recognition algorithm based on phase constellation and trajectory clustering was proposed aiming at the problem that the common recognition relied on manually extracted empirical features and suffered from low precision. An ideal baseband signal was recovered by preprocessing the received signal, such as filtering and timing synchronization. Then the waveform data of the signal was transformed into a constellation diagram and vector trajectory diagram. The signal modulation recognition problem was transformed into a featured image classification problem by exploiting the techniques in deep learning (DL). The extracted features were input into a lightweight residual structure network with two parallel inputs. Then hierarchical learning and feature fusion training were performed to achieve the target modulation recognition. The simulation experiments showed that the recognition rates achieved by the feature fusion method outperformed those achieved by the methods based on high-order statistics, constellation diagrams and signal waveform. The recognition rate for seven types of modulation consisting of MPSK (M = 2, 4, 8), MQAM (M = 16, 64), and MAPSK (M = 16, 32) can reach 95.14% when the signal-to-noise ratio (SNR) is larger than 2 dB.
|
Received: 16 November 2021
Published: 25 October 2022
|
|
Fund: 国防基础科研计划资助项目(JCKY2020210B021) |
Corresponding Authors:
Ming-min ZHAO
E-mail: luojing123@zju.edu.cn;zmmblack@zju.edu.cn
|
基于相位融合特征和残差网络的调制智能识别
针对调制识别依赖人工提取的经验特征、识别准确率低的问题,提出基于相位星座图和矢量轨迹图融合聚类的智能识别算法.通过对接收信号进行滤波、定时同步预处理,恢复出较理想的基带信号,将信号的波形数据转化为星座图和矢量轨迹图特征. 利用深度学习(DL)将调制识别转换成图像的分类问题,将所提取的特征通过2路并行输入的轻量级残差结构网络,开展分层学习和特征融合训练,完成对目标调制方式的识别. 仿真实验表明,基于融合特征的识别结果优于目前的基于高阶累积量、星座图和波形数据的识别结果,当信噪比(SNR)高于2 dB时,对MPSK(调制的阶数为 2、4、8)、MQAM(调制的阶数为16、64)、MAPSK(调制的阶数为16、32)这7类调制的识别率可以达到95.14%.
关键词:
调制识别,
星座图,
矢量轨迹图,
融合训练,
残差网络
|
|
[1] |
DOBRE O A, ABDI A, BAR-NESS Y, et al Survey of automatic modulation classification techniques: classical approaches and new trends[J]. IET Communications, 2007, 1 (2): 137- 156
doi: 10.1049/iet-com:20050176
|
|
|
[2] |
JDID B, HASSAN K, DAYOUB I, et al Machine learning based automatic modulation recognition for wireless communications: a comprehensive survey[J]. IEEE Access, 2021, 9 (1): 57851- 57873
|
|
|
[3] |
李晨, 杨俊安, 刘辉 基于信息熵和GA-ELM的调制识别算法[J]. 系统工程与电子技术, 2020, 42 (1): 223- 229 LI Chen, YANG Jun-an, LIU Hui Modulation recognition algorithm based on information entropy and GA-ELM[J]. Systems Engineering and Electronics, 2020, 42 (1): 223- 229
doi: 10.3969/j.issn.1001-506X.2020.01.30
|
|
|
[4] |
ZENG Y, ZHANG M, HAN F, et al Spectrum analysis and convolutional neural network for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2019, 8 (3): 929- 932
doi: 10.1109/LWC.2019.2900247
|
|
|
[5] |
ALI A K, ERELEBI E Automatic modulation recognition of DVB-S2X standard-specific with an APSK-based neural network classifier[J]. Measurement, 2019, 151: 107257
|
|
|
[6] |
XIE W, HU S, YU C, et al Deep learning in digital modulation recognition using high order cumulants[J]. IEEE Access, 2019, 7: 63760- 63766
doi: 10.1109/ACCESS.2019.2916833
|
|
|
[7] |
WANG Y, LIU M, YANG J, et al Data-driven deep learning for automatic modulation recognition in cognitive radios[J]. IEEE Transactions on Vehicular Technology, 2019, 68 (4): 4074- 4077
doi: 10.1109/TVT.2019.2900460
|
|
|
[8] |
李润东, 李立忠, 李少谦, 等 基于稀疏滤波神经网络的智能调制识别[J]. 电子科技大学学报, 2019, 48 (2): 161- 167 LI Run-dong, LI Li-zhong, LI Shao-qian, et al Intelligent modulation recognition based on sparse filtering neural network[J]. Journal of University of Electronic Science and Technology of China, 2019, 48 (2): 161- 167
doi: 10.3969/j.issn.1001-0548.2019.02.001
|
|
|
[9] |
DENG L, YU D Deep learning: methods and applications[J]. Foundations and Trends in Signal Processing, 2014, 7 (3): 197- 387
|
|
|
[10] |
MASI I, CHANG F J, CHOI J, et al Learning pose-aware models for pose-invariant face recognition in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41 (2): 379- 393
|
|
|
[11] |
CHOWDHURY A, ROSS A Fusing MFCC and LPC features using 1D triplet CNN for speaker recognition in severely degraded audio signals[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 1616- 1629
doi: 10.1109/TIFS.2019.2941773
|
|
|
[12] |
HUANG C, LI Y, CHEN C L, et al Deep imbalanced learning for face recognition and attribute prediction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (11): 2781- 2794
doi: 10.1109/TPAMI.2019.2914680
|
|
|
[13] |
HUANG S, JIANG Y, GAO Y, et al Automatic modulation classification using contrastive fully convolutional network[J]. IEEE Wireless Communication Letters, 2019, 8 (4): 1044- 1047
doi: 10.1109/LWC.2019.2904956
|
|
|
[14] |
TENG C F, CHOU C Y, CHEN C H, et al Accumulated polar feature-based deep learning for efficient and lightweight automatic modulation classification with channel compensation mechanism[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (12): 15472- 15485
doi: 10.1109/TVT.2020.3041843
|
|
|
[15] |
HUYNH-THE T, HUA C H, PHAM Q V, et al Mcnet: an efficient CNN architecture for robust automatic modulation classification[J]. IEEE Communications Letters, 2020, 244 (4): 811- 815
|
|
|
[16] |
O'SHEA T J, ROY T, CLANCY T C Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179
doi: 10.1109/JSTSP.2018.2797022
|
|
|
[17] |
ANEDDA M, MELONI A, MURRONI M 64-APSK constellation and mapping optimization for satellite broadcasting using genetic algorithms[J]. IEEE Transactions on Broadcasting, 2015, 62 (1): 1- 9
|
|
|
[18] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
|
|
[19] |
MA J, LIN S C, GAO H, et al. Automatic modulation classification under non-Gaussian noise: a deep residual learning approach [C]// 2019 IEEE International Conference on Communications. Shanghai: IEEE, 2019: 1-6.
|
|
|
[20] |
MORELLI M, ANDREA A N D, MENGALI U Feedforward Ml-based timing estimation with PSK signals[J]. IEEE Communications Letters, 1997, 1 (3): 80- 82
doi: 10.1109/4234.585803
|
|
|
[21] |
ERUP L, GARDNER F M Interpolation in digital modems. II. implementation and performance[J]. IEEE Transactions on Communications, 1993, 41 (6): 998- 1008
doi: 10.1109/26.231921
|
|
|
[22] |
PENG S L, JIANG H Y, WANG H X, et al Modulation classification based on signal constellation diagrams and deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30 (3): 718- 727
doi: 10.1109/TNNLS.2018.2850703
|
|
|
[23] |
ASLAM M W, ZHU Z, NANDI A K Automatic modulation classification using combination of genetic programming and KNN[J]. IEEE Transactions on Wireless Communications, 2012, 11 (8): 2742- 2750
|
|
|
[24] |
KRZYSTON J, BHATTACHARJEA R, STARK A. Complex-valued convolutions for modulation recognition using deep learning [C]// 2020 IEEE International Conference on Communications Workshops. Dublin: IEEE, 2020: 1-6.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|