|
|
Digital widely linear self-interference canceller based on spread spectrum signal |
Tian-qing XU1,2( ),Ren-ting SONG3,Jia-jun HUANG1,2,Chao-jie ZHANG1,2,*( ) |
1. Zhejiang Key Laboratory of Micro-Nano Satellite Research, Hangzhou 310027, China 2. Micro-satellite Research Center, Zhejiang University, Hangzhou 310027, China 3. China Xi’an Satellite Control Center, Xi’an 710043, China |
|
|
Abstract The effective digital domain cancellation method was designed for the self-interference in an in-band full-duplex system. The power level of each component in self-interference was analyzed. A digital LMS self-interference canceller based on widely linear model was designed aiming at the image signal caused by I/Q imbalance. Spread spectrum pseudo noise code was utilized to strengthen the non-correlation between self-interference and signal of interest for cancellation improvement. The simulation results demonstrate that the designed digital canceller possesses the ability to reconstruct and cancel the image signal for different image rejection ratios. Estimation noise caused by signal correlation in error vector of the LMS filter was reduced due to the utilization of spread spectrum pseudo noise code. A maximum cancellation gain of 7.5 dB was obtained in the simulation. The performance of the digital canceller was improved owing to the utilization of either widely linear model or pseudo noise code for different input signal-to-interference ratios.
|
Received: 26 October 2021
Published: 25 October 2022
|
|
Fund: 国家自然科学基金资助项目(62073289) |
Corresponding Authors:
Chao-jie ZHANG
E-mail: xutq@zju.edu.cn;zhangcj@zju.edu.cn
|
基于扩频信号的数字广义线性自干扰消除器
针对带内全双工系统中的自干扰信号问题,设计有效的数字域消除方案. 分析自干扰信号中各分量的功率量级,针对I/Q不平衡引起的镜像分量,设计基于广义线性模型的数字域LMS自干扰消除器. 为了提高自干扰消除性能,引入扩频伪码,以加强自干扰信号和有用信号间的非相关性. 仿真结果表明,设计的数字域消除器具备在不同镜像抑制比条件下对镜像分量的重建和抵消能力. 引入扩频伪码,能够减小滤波器误差向量中因信号相关性导致的估计噪声,仿真中最高获得了7.5 dB的消除量提升. 在不同输入信干比的条件下,采用广义线性模型和引入扩频伪码,均提升了数字域消除器的性能.
关键词:
带内全双工,
自干扰消除,
广义线性模型,
扩频,
自适应滤波器
|
|
[1] |
KORPI D, RIIHONEN T, SYRJÄLÄ V, et al Full-duplex transceiver system calculations: analysis of ADC and linearity challenges[J]. IEEE Transactions on Wireless Communications, 2014, 13 (7): 3821- 3836
doi: 10.1109/TWC.2014.2315213
|
|
|
[2] |
KOLODZIEJ K E, PERRY B T, HERD J S In-band full-duplex technology: techniques and systems survey[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67 (7): 3025- 3041
doi: 10.1109/TMTT.2019.2896561
|
|
|
[3] |
ZHANG Z, LONG K, VASILAKOS A V, et al Full-duplex wireless communications: challenges, solutions, and future research directions[J]. Proceedings of the IEEE, 2016, 104 (7): 1369- 1409
doi: 10.1109/JPROC.2015.2497203
|
|
|
[4] |
BHARADIA D, MCMILIN E, KATTI S Full duplex radios[J]. ACM SIGCOMM Computer Communication Review, 2013, 43 (4): 375- 386
doi: 10.1145/2534169.2486033
|
|
|
[5] |
SAHAI A, PATEL G, DICK C, et al On the impact of phase noise on active cancelation in wireless full-duplex[J]. IEEE Transactions on Vehicular Technology, 2013, 62 (9): 4494- 4510
doi: 10.1109/TVT.2013.2266359
|
|
|
[6] |
KORPI D, ANTTILA L, SYRJÄLÄ V, et al Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver[J]. IEEE Journal on Selected Areas in Communications, 2014, 32 (9): 1674- 1687
doi: 10.1109/JSAC.2014.2330093
|
|
|
[7] |
AUSTIN A, BALATSOUKAS-STIMMING A, BURG A. Digital predistortion of power amplifier non-linearities for full-duplex transceivers [C]// 17th IEEE International Workshop on Signal Processing Advances in Wireless Communications. Edinburgh: IEEE, 2016: 1-5.
|
|
|
[8] |
ANTTILA L, LAMPU V, HASSANI S A, et al Full-duplexing with SDR devices: algorithms, FPGA implementation and real-time results[J]. IEEE Transactions on Wireless Communications, 2020, 20 (4): 2205- 2220
|
|
|
[9] |
YILAN M, GURBUZ O, OZKAN H Nonlinear digital self-interference cancellation for full duplex communication[J]. Physical Communication, 2019, 35: 100698
doi: 10.1016/j.phycom.2019.04.012
|
|
|
[10] |
BALATSOUKAS-STIMMING A. Non-linear digital self-interference cancellation for in-band full-duplex radios using neural networks [C]// 19th IEEE International Workshop on Signal Processing Advances in Wireless Communications. Kalamata: IEEE, 2018: 1-5.
|
|
|
[11] |
SHI C, HAO Y, LIU Y, et al. Digital self-interference cancellation for full duplex wireless communication based on neural networks [C]// 4th International Conference on Communication and Information Systems. Wuhan: IEEE, 2019: 53-57.
|
|
|
[12] |
LI R, MASMOUDI A, LE-NGOC T Self-interference cancellation with nonlinearity and phase-noise suppression in full-duplex systems[J]. IEEE Transactions on Vehicular Technology, 2017, 67 (3): 2118- 2129
|
|
|
[13] |
KORPI D, CHOI Y S, HUUSARI T, et al. Adaptive nonlinear digital self-interference cancellation for mobile inband full-duplex radio: algorithms and RF measurements [C]// IEEE Global Communications Conference. San Diego: IEEE, 2015: 1-7.
|
|
|
[14] |
KRIER J R, AKYILDIZ I F. Active self-interference cancellation of passband signals using gradient descent [C]// 24th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications. London: IEEE, 2013: 1212-1216.
|
|
|
[15] |
SHEN L, HENSON B, ZAKHAROV Y, et al Digital self-interference cancellation for full-duplex underwater acoustic systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 67 (1): 192- 196
|
|
|
[16] |
LI Z, XIA Y, PEI W, et al An augmented nonlinear LMS for digital self-interference cancellation in full-duplex direct-conversion transceivers[J]. IEEE Transactions on Signal Processing, 2018, 66 (15): 4065- 4078
doi: 10.1109/TSP.2018.2846250
|
|
|
[17] |
GIL G T, SOHN I H, PARK J K, et al Joint ML estimation of carrier frequency, channel, I/Q mismatch, and DC offset in communication receivers[J]. IEEE Transactions on Vehicular Technology, 2005, 54 (1): 338- 349
doi: 10.1109/TVT.2004.836919
|
|
|
[18] |
PICINBONO B, CHEVALIER P Widely linear estimation with complex data[J]. IEEE transactions on Signal Processing, 1995, 43 (8): 2030- 2033
doi: 10.1109/78.403373
|
|
|
[19] |
MORGAN D R, MA Z, KIM J, et al A generalized memory polynomial model for digital predistortion of RF power amplifiers[J]. IEEE Transactions on Signal Processing, 2006, 54 (10): 3852- 3860
doi: 10.1109/TSP.2006.879264
|
|
|
[20] |
HAYKIN S. 自适应滤波器原理(第五版)[M]. 北京: 电子工业出版社, 2016.
|
|
|
[21] |
HORN R A, JOHNSON C R. Matrix analysis [M]. Cambridge: Cambridge University Press, 2012: 227-228.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|