Open electrical impedance imaging algorithm based on multi-scale residual network model
Jin-zhen LIU1,2(),Fei CHEN1,2,Hui XIONG1,2
1. School of Control Science and Engineering, Tiangong University, Tianjin 300387, China 2. Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin 300387, China
An open electrical impedance tomography (OEIT) algorithm based on multi-scale residual neural network model was proposed, to improve the problems of OEIT image reconstruction algorithm, such as low imaging accuracy, sensitive to noise and large artifact area of reconstructed image. The algorithm used residual blocks with different sizes of convolution kernels to extract multi-scale features of boundary voltage. After the features were spliced, convolution was used to realize deep information fusion to obtain predicted conductivity distribution results. A model for the OEIT forward problem was built by the finite element method and a data set of "boundary voltage-conductivity distribution" was constructed. The proposed algorithm was compared with other algorithms in the data set and actual model experiments. Results show that the reconstruction accuracy, anti-noise ability and target location accuracy of OEIT are improved significantly by using the proposed algorithm, while the artifact area of the target is reduced.
Jin-zhen LIU,Fei CHEN,Hui XIONG. Open electrical impedance imaging algorithm based on multi-scale residual network model. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1789-1795.
Fig.1Schematic diagram of open electrical impedance tomography measurement method
Fig.2Residual module of original residual network
Fig.3Multi-scale residual module
Fig.4Global structure of multi-scale residual network
组别
c1
c2
n
1
27, 25, 23
25
16
2
21, 19, 17
19
32
3
15, 13, 11
13
32
4
9, 7, 5
7
64
Tab.1Parameters of multi-scale residual network
Fig.5Loss curves of three deep learning open electrical impedance tomography algorithms
Fig.6Data set partial sample model diagram
Fig.7Partial models and their reconstructed images for four open electrical impedance imaging algorithms
算法
$\overline {{\rm{RIE}}} $
$\overline { {\rm{ICC} } }$
算法
$\overline {{\rm{RIE}}} $
$\overline { {\rm{ICC} } }$
TV正则化
0.758 7
0.646 9
深度残差
0.250 7
0.860 8
1D-CNN
0.379 8
0.786 5
本研究
0.196 0
0.893 6
Tab.2Comparison of evaluation indexes of four open electrical impedance imaging algorithms
Fig.8Partial models and reconstructed images of four open electrical impedance tomography algorithms under different noise
算法
SNR=80 dB
SNR=50 dB
SNR=30 dB
$\overline { {\rm{RIE} } } $
$\overline { {\rm{ICC} } } $
$\overline { {\rm{RIE} } } $
$\overline { {\rm{ICC} } } $
$\overline { {\rm{RIE} } } $
$\overline { {\rm{ICC} } } $
TV正则化
0.808 2
0.563 6
0.845 9
0.528 7
0.877 2
0.465 5
1D-CNN
0.378 0
0.787 9
0.378 3
0.787 6
0.401 5
0.770 9
深度残差
0.251 9
0.859 9
0.254 5
0.858 4
0.349 2
0.799 4
本研究
0.197 4
0.892 6
0.200 4
0.890 7
0.278 9
0.842 3
Tab.3Comparison of evaluation indexes of different noises
Fig.9Physical drawing of measurement system hardware
Fig.10Image reconstruction results of four open electrical impedance imaging algorithms
算法
$\overline { {\rm{RIE} } } $
$\overline { {\rm{ICC} } } $
算法
$\overline { {\rm{RIE} } } $
$\overline { {\rm{ICC} } } $
TV正则化
0.812 9
0.543 3
深度残差
0.602 7
0.793 8
1D-CNN
0.664 1
0.737 4
本研究
0.556 1
0.814 3
Tab.4Comparison of evaluation indexes of actual data
[1]
JIANG D, WU Y, DEMOSTHENOUS A Hand gesture recognition using three-dimensional electrical impedance tomography[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67 (9): 1554- 1558
doi: 10.1109/TCSII.2020.3006430
[2]
全卉, 马利庄 基于生物电阻抗的人体内脏脂肪预测方法[J]. 浙江大学学报: 工学版, 2011, 45 (2): 301- 305 QUAN Hui, MA Li-zhuang Visceral fat estimation method based on bioelectrical impedance technology[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (2): 301- 305
[3]
BAYFORD R, POLYDORIDES N Focus on recent advances in electrical impedance tomography[J]. Physiological Measurement, 2019, 40 (10): 100401
doi: 10.1088/1361-6579/ab42cd
[4]
LIU S, JIA J, ZHANG Y D, et al Image reconstruction in electrical impedance tomography based on structure-aware sparse Bayesian learning[J]. IEEE Transactions on Medical Imaging, 2018, 37 (9): 2090- 2102
doi: 10.1109/TMI.2018.2816739
[5]
YANG Z, YAN G Damage detection for composites using carbon nanotube film and electrical impedance tomography technology[J]. Advanced Experimental Mechanics, 2018, 3: 161- 166
[6]
ZHAO Z, CHANG M Y, FRERICHS I, et al Regional air trapping in acute exacerbation of obstructive lung diseases measured with electrical impedance tomography: a feasibility study[J]. Minerva Anestesiol, 2020, 86 (2): 172- 180
[7]
WITKOWSKA-WROBEL A, ARISTOVICH K, CRAWFORD A, et al Imaging of focal seizures with electrical impedance tomography and depth electrodes in real time[J]. Neuroimage, 2021, 234 (4): 117972
[8]
LIU D, KHAMBAMPATI A K, KIM S, et al Multi-phase flow monitoring with electrical impedance tomography using level set based method[J]. Nuclear Engineering and Design, 2015, 289: 108- 116
doi: 10.1016/j.nucengdes.2015.04.023
[9]
LIU D, KHAMBAMPATI A K, Du J A parametric level set method for electrical impedance tomography[J]. IEEE Transactions on Medical Imaging, 2018, 37 (2): 451- 460
doi: 10.1109/TMI.2017.2756078
[10]
ALBERTI G S, AMMARI H, JIN B, et al The linearized inverse problem in multifrequency electrical impedance tomography[J]. SIAM Journal on Imaging Sciences, 2016, 9 (4): 1525- 1551
doi: 10.1137/16M1061564
[11]
WANG J, HAN B, WAN W Elastic-net regularization for nonlinear electrical impedance tomography with a splitting approach[J]. Applicable Analysis, 2019, 98 (12): 2201- 2217
doi: 10.1080/00036811.2018.1451644
[12]
SANTOS T B R, NAKANISHI R M, KAIPIO J P, et al Introduction of sample based prior into the D-bar method through a schur complement property[J]. IEEE Transactions On Medical Imaging, 2020, 39 (12): 4085- 4093
doi: 10.1109/TMI.2020.3012428
[13]
QIN X, ZHANG Z, HUANG C, et al U2-Net: going deeper with nested U-structure for salient object detection [J]. Pattern Recognition, 2020, 106: 107404
doi: 10.1016/j.patcog.2020.107404
[14]
KO Y F, CHENG K S U-Net-based approach for automatic lung segmentation in electrical impedance tomography[J]. Physiological Measurement, 2021, 42 (2): 025002
doi: 10.1088/1361-6579/abe021
[15]
REN S, SUN K, TAN C, et al A two-stage deep learning method for robust shape reconstruction with electrical impedance tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (7): 4887- 4897
doi: 10.1109/TIM.2019.2954722
[16]
JIN K H, MCCANN M T, FROUSTEY E, et al Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2017, 26 (9): 4509- 4522
doi: 10.1109/TIP.2017.2713099
[17]
CHEN Y, LI K, HAN Y Electrical resistance tomography with conditional generative adversarial networks[J]. Measurement Science and Technology, 2020, 31 (5): 055401
doi: 10.1088/1361-6501/ab62c4
[18]
HAMILTON S J, HAUPTMANN A Deep D-bar: real-time electrical impedance tomography imaging with deep neural networks[J]. IEEE Transactions on Medical Imaging, 2018, 37 (10): 2367- 2377
doi: 10.1109/TMI.2018.2828303
[19]
LI X, LU R, WANG Q, et al One-dimensional convolutional neural network (1D-CNN) image reconstruction for electrical impedance tomography[J]. Review of Scientific Instruments, 2020, 91 (12): 124704
doi: 10.1063/5.0025881
[20]
SUN B, YUE S, HAO Z, et al An improved Tikhonov regularization method for lung cancer monitoring using electrical impedance tomography[J]. IEEE Sensors Journal, 2019, 19 (8): 3049- 3057
doi: 10.1109/JSEN.2019.2892179
[21]
ZONG Z, WANG Y, WEI Z A review of algorithms and hardware implementations in electrical impedance tomography[J]. Progress In Electromagnetics Research, 2020, 169: 59- 71
doi: 10.2528/PIER20120401
[22]
LI F, TAN C, DONG F, et al V-Net deep imaging method for electrical resistance tomography[J]. IEEE Sensors Journal, 2020, 20 (12): 6460- 6469
doi: 10.1109/JSEN.2020.2973337