Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (9): 1789-1795    DOI: 10.3785/j.issn.1008-973X.2022.09.012
    
Open electrical impedance imaging algorithm based on multi-scale residual network model
Jin-zhen LIU1,2(),Fei CHEN1,2,Hui XIONG1,2
1. School of Control Science and Engineering, Tiangong University, Tianjin 300387, China
2. Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin 300387, China
Download: HTML     PDF(1889KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An open electrical impedance tomography (OEIT) algorithm based on multi-scale residual neural network model was proposed, to improve the problems of OEIT image reconstruction algorithm, such as low imaging accuracy, sensitive to noise and large artifact area of reconstructed image. The algorithm used residual blocks with different sizes of convolution kernels to extract multi-scale features of boundary voltage. After the features were spliced, convolution was used to realize deep information fusion to obtain predicted conductivity distribution results. A model for the OEIT forward problem was built by the finite element method and a data set of "boundary voltage-conductivity distribution" was constructed. The proposed algorithm was compared with other algorithms in the data set and actual model experiments. Results show that the reconstruction accuracy, anti-noise ability and target location accuracy of OEIT are improved significantly by using the proposed algorithm, while the artifact area of the target is reduced.



Key wordsopen electrical impedance tomography (OEIT)      image reconstruction      deep learning      residual network      multi-scale feature     
Received: 18 September 2021      Published: 28 September 2022
CLC:  R 318.0  
Fund:  天津市教委科研计划项目(2019KJ014)
Cite this article:

Jin-zhen LIU,Fei CHEN,Hui XIONG. Open electrical impedance imaging algorithm based on multi-scale residual network model. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1789-1795.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.09.012     OR     https://www.zjujournals.com/eng/Y2022/V56/I9/1789


多尺度残差网络模型的开放式电阻抗成像算法

针对开放式电阻抗成像(OEIT)的图像重建算法存在的成像精度低、对噪声敏感、重建图像伪影面积较大等问题,提出基于多尺度残差网络模型的OEIT算法. 该算法利用不同尺寸卷积核的残差块提取边界电压的多尺度特征;在完成特征拼接后,利用卷积实现深层信息融合,得到预测的电导率分布结果. 使用有限元法搭建OEIT正问题模型,构造“边界电压?电导率分布”数据集,将所提算法与其他算法在该数据集和实际模型实验中进行比较. 结果表明,所提算法使OEIT的重建精度、抗噪能力和定位目标准确性显著提高,并使检测目标的伪影面积缩小.


关键词: 开放式电阻抗成像(OEIT),  图像重建,  深度学习,  残差网络,  多尺度特征 
Fig.1 Schematic diagram of open electrical impedance tomography measurement method
Fig.2 Residual module of original residual network
Fig.3 Multi-scale residual module
Fig.4 Global structure of multi-scale residual network
组别 c1 c2 n
1 27, 25, 23 25 16
2 21, 19, 17 19 32
3 15, 13, 11 13 32
4 9, 7, 5 7 64
Tab.1 Parameters of multi-scale residual network
Fig.5 Loss curves of three deep learning open electrical impedance tomography algorithms
Fig.6 Data set partial sample model diagram
Fig.7 Partial models and their reconstructed images for four open electrical impedance imaging algorithms
算法 $\overline {{\rm{RIE}}} $ $\overline { {\rm{ICC} } }$ 算法 $\overline {{\rm{RIE}}} $ $\overline { {\rm{ICC} } }$
TV正则化 0.758 7 0.646 9 深度残差 0.250 7 0.860 8
1D-CNN 0.379 8 0.786 5 本研究 0.196 0 0.893 6
Tab.2 Comparison of evaluation indexes of four open electrical impedance imaging algorithms
Fig.8 Partial models and reconstructed images of four open electrical impedance tomography algorithms under different noise
算法 SNR=80 dB SNR=50 dB SNR=30 dB
$\overline { {\rm{RIE} } } $ $\overline { {\rm{ICC} } } $ $\overline { {\rm{RIE} } } $ $\overline { {\rm{ICC} } } $ $\overline { {\rm{RIE} } } $ $\overline { {\rm{ICC} } } $
TV正则化 0.808 2 0.563 6 0.845 9 0.528 7 0.877 2 0.465 5
1D-CNN 0.378 0 0.787 9 0.378 3 0.787 6 0.401 5 0.770 9
深度残差 0.251 9 0.859 9 0.254 5 0.858 4 0.349 2 0.799 4
本研究 0.197 4 0.892 6 0.200 4 0.890 7 0.278 9 0.842 3
Tab.3 Comparison of evaluation indexes of different noises
Fig.9 Physical drawing of measurement system hardware
Fig.10 Image reconstruction results of four open electrical impedance imaging algorithms
算法 $\overline { {\rm{RIE} } } $ $\overline { {\rm{ICC} } } $ 算法 $\overline { {\rm{RIE} } } $ $\overline { {\rm{ICC} } } $
TV正则化 0.812 9 0.543 3 深度残差 0.602 7 0.793 8
1D-CNN 0.664 1 0.737 4 本研究 0.556 1 0.814 3
Tab.4 Comparison of evaluation indexes of actual data
[1]   JIANG D, WU Y, DEMOSTHENOUS A Hand gesture recognition using three-dimensional electrical impedance tomography[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67 (9): 1554- 1558
doi: 10.1109/TCSII.2020.3006430
[2]   全卉, 马利庄 基于生物电阻抗的人体内脏脂肪预测方法[J]. 浙江大学学报: 工学版, 2011, 45 (2): 301- 305
QUAN Hui, MA Li-zhuang Visceral fat estimation method based on bioelectrical impedance technology[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (2): 301- 305
[3]   BAYFORD R, POLYDORIDES N Focus on recent advances in electrical impedance tomography[J]. Physiological Measurement, 2019, 40 (10): 100401
doi: 10.1088/1361-6579/ab42cd
[4]   LIU S, JIA J, ZHANG Y D, et al Image reconstruction in electrical impedance tomography based on structure-aware sparse Bayesian learning[J]. IEEE Transactions on Medical Imaging, 2018, 37 (9): 2090- 2102
doi: 10.1109/TMI.2018.2816739
[5]   YANG Z, YAN G Damage detection for composites using carbon nanotube film and electrical impedance tomography technology[J]. Advanced Experimental Mechanics, 2018, 3: 161- 166
[6]   ZHAO Z, CHANG M Y, FRERICHS I, et al Regional air trapping in acute exacerbation of obstructive lung diseases measured with electrical impedance tomography: a feasibility study[J]. Minerva Anestesiol, 2020, 86 (2): 172- 180
[7]   WITKOWSKA-WROBEL A, ARISTOVICH K, CRAWFORD A, et al Imaging of focal seizures with electrical impedance tomography and depth electrodes in real time[J]. Neuroimage, 2021, 234 (4): 117972
[8]   LIU D, KHAMBAMPATI A K, KIM S, et al Multi-phase flow monitoring with electrical impedance tomography using level set based method[J]. Nuclear Engineering and Design, 2015, 289: 108- 116
doi: 10.1016/j.nucengdes.2015.04.023
[9]   LIU D, KHAMBAMPATI A K, Du J A parametric level set method for electrical impedance tomography[J]. IEEE Transactions on Medical Imaging, 2018, 37 (2): 451- 460
doi: 10.1109/TMI.2017.2756078
[10]   ALBERTI G S, AMMARI H, JIN B, et al The linearized inverse problem in multifrequency electrical impedance tomography[J]. SIAM Journal on Imaging Sciences, 2016, 9 (4): 1525- 1551
doi: 10.1137/16M1061564
[11]   WANG J, HAN B, WAN W Elastic-net regularization for nonlinear electrical impedance tomography with a splitting approach[J]. Applicable Analysis, 2019, 98 (12): 2201- 2217
doi: 10.1080/00036811.2018.1451644
[12]   SANTOS T B R, NAKANISHI R M, KAIPIO J P, et al Introduction of sample based prior into the D-bar method through a schur complement property[J]. IEEE Transactions On Medical Imaging, 2020, 39 (12): 4085- 4093
doi: 10.1109/TMI.2020.3012428
[13]   QIN X, ZHANG Z, HUANG C, et al U2-Net: going deeper with nested U-structure for salient object detection [J]. Pattern Recognition, 2020, 106: 107404
doi: 10.1016/j.patcog.2020.107404
[14]   KO Y F, CHENG K S U-Net-based approach for automatic lung segmentation in electrical impedance tomography[J]. Physiological Measurement, 2021, 42 (2): 025002
doi: 10.1088/1361-6579/abe021
[15]   REN S, SUN K, TAN C, et al A two-stage deep learning method for robust shape reconstruction with electrical impedance tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (7): 4887- 4897
doi: 10.1109/TIM.2019.2954722
[16]   JIN K H, MCCANN M T, FROUSTEY E, et al Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2017, 26 (9): 4509- 4522
doi: 10.1109/TIP.2017.2713099
[17]   CHEN Y, LI K, HAN Y Electrical resistance tomography with conditional generative adversarial networks[J]. Measurement Science and Technology, 2020, 31 (5): 055401
doi: 10.1088/1361-6501/ab62c4
[18]   HAMILTON S J, HAUPTMANN A Deep D-bar: real-time electrical impedance tomography imaging with deep neural networks[J]. IEEE Transactions on Medical Imaging, 2018, 37 (10): 2367- 2377
doi: 10.1109/TMI.2018.2828303
[19]   LI X, LU R, WANG Q, et al One-dimensional convolutional neural network (1D-CNN) image reconstruction for electrical impedance tomography[J]. Review of Scientific Instruments, 2020, 91 (12): 124704
doi: 10.1063/5.0025881
[20]   SUN B, YUE S, HAO Z, et al An improved Tikhonov regularization method for lung cancer monitoring using electrical impedance tomography[J]. IEEE Sensors Journal, 2019, 19 (8): 3049- 3057
doi: 10.1109/JSEN.2019.2892179
[21]   ZONG Z, WANG Y, WEI Z A review of algorithms and hardware implementations in electrical impedance tomography[J]. Progress In Electromagnetics Research, 2020, 169: 59- 71
doi: 10.2528/PIER20120401
[22]   LI F, TAN C, DONG F, et al V-Net deep imaging method for electrical resistance tomography[J]. IEEE Sensors Journal, 2020, 20 (12): 6460- 6469
doi: 10.1109/JSEN.2020.2973337
[1] Kun HAO,Kuo WANG,Bei-bei WANG. Lightweight underwater biological detection algorithm based on improved Mobilenet-YOLOv3[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1622-1632.
[2] Yong-sheng ZHAO,Rui-xiang LI,Na-na NIU,Zhi-yong ZHAO. Shape control method of fuselage driven by digital twin[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1457-1463.
[3] Li HE,Shan-min PANG. Face reconstruction from voice based on age-supervised learning and face prior information[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1006-1016.
[4] Xue-qin ZHANG,Tian-ren LI. Breast cancer pathological image classification based on Cycle-GAN and improved DPN network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 727-735.
[5] Jing-hui CHU,Li-dong SHI,Pei-guang JING,Wei LV. Context-aware knowledge distillation network for object detection[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 503-509.
[6] Ruo-ran CHENG,Xiao-li ZHAO,Hao-jun ZHOU,Han-chen YE. Review of Chinese font style transfer research based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 510-519, 530.
[7] Tong CHEN,Jian-feng GUO,Xin-zhong HAN,Xue-li XIE,Jian-xiang XI. Visible and infrared image matching method based on generative adversarial model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 63-74.
[8] Song REN,Qian-wen ZHU,Xin-yue TU,Chao DENG,Xiao-shu WANG. Lining disease identification of highway tunnel based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 92-99.
[9] Xing LIU,Jian-bo YU. Attention convolutional GRU-based autoencoder and its application in industrial process monitoring[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1643-1651.
[10] Xue-yun CHEN,Xiao-qiao HUANG,Li XIE. Classification and detection method of blood cells images based on multi-scale conditional generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1772-1781.
[11] Jia-cheng LIU,Jun-zhong JI. Classification method of fMRI data based on broad learning system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1270-1278.
[12] Li-sheng JIN,Qiang HUA,Bai-cang GUO,Xian-yi XIE,Fu-gang YAN,Bo-tao WU. Multi-target tracking of vehicles based on optimized DeepSort[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1056-1064.
[13] Teng ZHANG,Xin-long JIANG,Yi-qiang CHEN,Qian CHEN,Tao-mian MI,Piu CHAN. Wrist attitude-based Parkinson's disease ON/OFF state assessment after medication[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 639-647.
[14] Jia-hui XU,Jing-chang WANG,Ling CHEN,Yong WU. Surface water quality prediction model based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 601-607.
[15] Hong-li WANG,Bin GUO,Si-cong LIU,Jia-qi LIU,Yun-gang WU,Zhi-wen YU. End context-adaptative deep sensing model with edge-end collaboration[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 626-638.