Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (7): 1440-1448    DOI: 10.3785/j.issn.1008-973X.2020.07.024
    
Buoyancy change rule of deep-sea autonomous profiling float
Yue LIN1(),Hong-yu LI2,4,*(),Yi-cheng WEN3,4,Yan-chao ZOU3,4,Shao-bo YANG4,5,Xing-fei LI4,5
1. China Classification Society Qingdao Branch, Qingdao 266034, China
2. Ocean Science and Engineering College, Shandong University of Science and Technology, Qingdao 266590, China
3. Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
4. Qingdao Institute for Marine Technology, Tianjin University, Qingdao 266237, China
5. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
Download: HTML     PDF(1605KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The simulation model was established and the change rule of the overall deformation with pressure and temperature was obtained by taking the self-developed deep-sea autonomous profiling float "Fuxing-1" with the working depth 4 000 m as the research object in order to analyze the influence law of seawater temperature, salinity, pressure and other environmental parameters on the net buoyancy of deep-sea autonomous profiling float. The accuracy and reliability of the simulation model were verified by ballast test and sea test, and the change rules of volume and buoyancy were obtained during the movement of float. Results show that the effect of temperature on the volume of float mainly reflects in the shallow depth range, while the effect of pressure basically changes linearly with the depth. The net buoyancy of the float increases nonlinearly with the increases of depth. In the case of shallow depth, the change of net buoyancy is mainly affected by temperature, while in the case of large depth, the change is mainly affected by pressure. To 4 000 Pa, the total volume shrinkage of the float is 818 mL and the equal mass of net buoyancy increment is 463 g.



Key wordsautonomous profiling float      volume compression      buoyancy change      ARGO      Fuxing     
Received: 03 February 2020      Published: 05 July 2020
CLC:  P 715  
Corresponding Authors: Hong-yu LI     E-mail: y_lin@ccs.org.cn;skdlhy@163.com
Cite this article:

Yue LIN,Hong-yu LI,Yi-cheng WEN,Yan-chao ZOU,Shao-bo YANG,Xing-fei LI. Buoyancy change rule of deep-sea autonomous profiling float. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1440-1448.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.07.024     OR     http://www.zjujournals.com/eng/Y2020/V54/I7/1440


深海自持式剖面浮标浮力变化规律

为了分析海水温度、盐度、压力等环境参量对深海自持式剖面浮标净浮力的影响规律,以自主研发的4 000 m水深自持式智能浮标“浮星1号”为研究对象,建立理论模型,得到浮标整体变形量随压力、温度的变化规律. 通过压载试验及海上试验,验证了仿真模型预测结果的准确性和可靠性,得到浮标运动过程中的体积及浮力变化规律. 研究结果表明:温度对浮标体积的影响主要体现在较浅深度范围内,压力对浮标体积的影响随水深基本呈线性规律变化;浮标净浮力随着水深的增加呈非线性规律增加,在较浅深度的情况下,净浮力变化量主要受温度的影响,在较大深度的情况下,净浮力变化量主要受压力的影响;至4 000 Pa,浮标体积收缩总量为818 mL,净浮力增量等效质量为463 g.


关键词: 自持式剖面浮标,  压缩量,  浮力变化,  ARGO,  浮星 
Fig.1 Motion diagram of “Fuxing-1”
Fig.2 Structure diagram of “Fuxing-1”
部件 材料 ${V_{0i}}$/mL 类型
  注:1)“其他”包含水密插头、水密线缆及仪器舱封装胶带,由于单项所占体积不大,此处合并计算.
天线 陶瓷 45.63 A
硫化橡胶 16.96 B
304不锈钢 51.58 B
外保护壳 中低密度聚乙烯 5 788.82 B
耐压壳体 硼硅酸盐玻璃 42 191.95 A
CTD 钛合金 1 125.38 A
POM 88.17 B
CTD支架+底座 POM 1 842.06 B
顶板+压载+紧固件 304不锈钢 1 023.66 B
油(气)囊 丁腈胶管 1 202.27 B
其他1) 78.94 B
Tab.1 Summary sheet of pressure-resistant parts of “Fuxing-1”
Fig.3 Finite element model of pressure-resistant hull
Fig.4 Deformation nephogram of pressure-resistant hull under action of pressure (40 MPa)
Fig.5 Deformation nephogram of pressure-resistant hull under action of temperature difference (−30 °C)
部件 压力影响( $p = 40\;{\rm{MPa}}$ 温度影响( $\Delta \theta $=?30 °C)
$\Delta {V_{{p} } }/{\rm{mL} }$ ${\omega _{{p} } }/{\text{% } }$ $\Delta {V_{\rm{\theta } } }/{\rm{mL} }$ ${\omega _{\rm{\theta } } }/{\text{% } }$
天线 3.42 2.99 1.12 0.98
外保护壳 106.87 1.85 114.62 1.98
耐压壳体 455.43 1.08 12.73 0.03
CTD 4.94 0.41 1.69 0.14
CTD支架+底座 19.40 1.05 17.24 0.94
顶板+压载+紧固件 0.27 0.03 1.66 0.16
油(气)囊 77.00 6.40 7.57 0.63
其他 17.70 22.43 4.76 6.03
Tab.2 Theoretical results of different parts’ volume shrinkage
Fig.6 Theoretical results of float’s volume shrinkage with pressure and temperature
Fig.7 Schematic diagram of float’s net buoyancy measured by ballast test
Fig.8 Prototype of ballast test
Fig.9 Site of ballast test
参数 数值 备注
样机质量(空气) $m{'_{\rm{f}}}$/ ${\rm{g}}$ 53 368 测量值
空气密度 ${\rho _{\rm{a}}}$/ $({\rm{g \cdot L^{-1} } })$ 1.23 经验值
样机体积(粗测) ${V_0}$/ ${\rm{mL} }$ 53 480 测量值
样机质量(真空) ${m_{\rm{f}}}$/ ${\rm{g}}$ 53 434 计算值
初始配重质量(空气) ${m_{\rm{w}}}$/ ${\rm{g}}$ 150 测量值
拉力计读数 ${F_{\rm{w}}}$/ ${\rm{N}}$ 2.35 测量值
砝码等效线密度 ${m_{\rm{c}}}$/ $({\rm{g\cdot m^{-1}} })$ 110 测量值
初始水温 ${\theta _0}$/°C 25.40 测量值
初始水密度 ${\rho _0}$/ $({\rm{kg\cdot } }{ {\rm{m} }^{\rm{-3} } })$ 997.10 测量值
Tab.3 Initial status record sheet of ballast test
Fig.10 Pressure time-history curve of ballast test
${p_{\rm{x}}}/{\rm{MPa}}$ $N$ ${m_{{p_{\rm{x}}}}}/{\rm{g}}$ ${p_{\rm{x}}}/{\rm{MPa}} $ $N$ $ {m_{{p_{\rm{x}}}}}/{\rm{g}}$
20.5 0 0 31.2 7 65
21.7 1 9 32.8 8 76
23.6 2 17 34.9 9 86
24.7 3 26 36.3 10 96
26.6 4 36 38.3 11 106
27.8 5 45 40.2 12 117
29.6 6 55 ? ? ?
Tab.4 Pressure and equal mass of net buoyancy of ballast test
Fig.11 Fitted cure of ballast test
Fig.12 Theoretical and ballast test results of float’s volume shrinkage with pressure
参数 数值
浮标总质量(空气) $m{'_{\rm{f}}}$/ ${\rm{g}}$ 55 380
配平油量 ${V_{\rm{b}}}$/ ${\rm{mL} }$ 410
配重质量(空气) ${m_{\rm{w}}}$/ ${\rm{g}}$ 2 131
配重密度 ${\rho _{\rm{w}}}$/ $({\rm{kg }}\cdot { {\rm{m} }^{\rm{-3} } })$ 7.93×103
初始水温 ${\theta _0}$/°C 27.80
初始水密度 ${\rho _0}$/ $({\rm{kg \cdot } }{ {\rm{m} }^{\rm{-3} } })$ 1 021.7
Tab.5 Initial status record sheet of sea test
Fig.13 Sea test deployment site of “Fuxing-1”
Fig.14 Change rule of seawater temperature, salinity and density
${V_{\rm{d} } }/{\rm{mL} }$ ${m_{\rm{p}}}/{\rm{g} }$ ${d_{\max }}/{\rm{m}}$
204 210 420.9
228 235 660.8
252 260 886.3
276 284 1 247.1
303 314 1 607.1
321 338 2 005.7
349 362 2 388.6
373 388 2 773.3
399 416 3 280.8
Tab.6 Oil return amount (or equal mass of net buoyancy change) and maximum depth
Fig.15 Change rule of float’s volume shrinkage with seawater temperature and pressure
Fig.16 Change rule of float’s net buoyancy in actual marine environment
[1]   陈鹿, 潘彬彬, 曹正良, 等 自动剖面浮标研究现状及展望[J]. 海洋技术学报, 2017, 36 (2): 1- 9
CHEN Lu, PAN Bin-bin, CAO Zheng-liang, et al Research status and prospects of automatic profiling floats[J]. Ocean Technology, 2017, 36 (2): 1- 9
[2]   HAREN H V, BERNDT C, KLAUCKE I Ocean mixing in deep-sea trenches: new insights from the challenger deep, Mariana Trench[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 129 (Supplement): 1- 9
[3]   WU J, LIU J, XU H. A variable buoyancy system and a recovery system developed for a deep-sea AUV Qianlong I [C] // Oceans 2014. Taipei: IEEE, 2014: 7-10.
[4]   PONTBRIAND C, FARR N, HANSEN J, et al. Wireless data harvesting using the AUV Sentry and WHOI optical modem [C] // Oceans 2015. Washington: IEEE, 2015: 19-22.
[5]   MCPHAIL S Autosub6000: a deep diving long range AUV[J]. Journal of Bionic Engineering, 2009, 6 (1): 55- 62
doi: 10.1016/S1672-6529(08)60095-5
[6]   KOBAYASHI T, AMAIKE K, WATANABE K, et al. Deep NINJA: a new float for deep ocean observation developed in Japan [C] // SSC. Japan: [s. n. ], 2011: 1-6.
[7]   IZAWA K, MIZUNO K, MIYAZAKI M, et al. On the weight adjustment of profiling floats [R]. Japan: JAMSTEC, 2002.
[8]   张少永, 林玉池 初探我国Argo浮标下潜深度标定[J]. 海洋技术, 2005, 24 (3): 41- 45
ZHANG Shao-yong, LIN Yu-chi Brief introduction to calibrating the profiling depth of the COPEX[J]. Ocean Technology, 2005, 24 (3): 41- 45
doi: 10.3969/j.issn.1003-2029.2005.03.010
[9]   姜言清, 李晔, 王友康, 等 全海深水下机器人的重力和浮力计算[J]. 哈尔滨工程大学学报, 2019, 40 (2): 1- 8
JIANG Yan-qing, LI Ye, WANG You-kang, et al Gravity and buoyancy analysis of full ocean depth autonomous underwater vehicle[J]. Journal of Harbin Engineering University, 2019, 40 (2): 1- 8
[10]   李硕, 燕奎臣, 李一平, 等 6000米AUV深海试验研究[J]. 海洋工程, 2007, 25 (4): 1- 6
LI Shuo, YAN Kui-chen, LI Yi-ping, et al Deep-sea test of 6000m AUV[J]. The Ocean Engineering, 2007, 25 (4): 1- 6
doi: 10.3969/j.issn.1005-9865.2007.04.001
[11]   武建国, 徐会希, 刘健, 等 深海AUV下潜过程浮力变化研究[J]. 机器人, 2014, 36 (4): 455- 460
WU Jian-guo, XU Hui-xi, LIU Jian, et al Research on the buoyancy change of deep-sea autonomous underwater vehicle in diving process[J]. Robot, 2014, 36 (4): 455- 460
[12]   武建国, 石凯, 刘健, 等 6000m AUV “潜龙一号”浮力调节系统开发及试验研究[J]. 海洋技术学报, 2014, 33 (5): 1- 7
WU Jian-guo, SHI Kai, LIU Jian, et al Development and experimental research on the variable buoyancy system for the 6000m rated class "Qianlong I" AUV[J]. Ocean Technology, 2014, 33 (5): 1- 7
[13]   王世明, 吴爱平 液压技术在ARGO浮标中的应用[J]. 流体传动与控制, 2010, (1): 50- 53
WANG Shi-ming, WU Ai-ping Application of hydraulics in ARGO buoyage[J]. Fluid Power Transmission and Control, 2010, (1): 50- 53
doi: 10.3969/j.issn.1672-8904.2010.01.016
[14]   WANG J, ZHANG H, WANG Y, et al. Dynamic simulation of buoyancy engine of underwater glider based on experimentation [C] // OCEANS 2017. Aberdeen: IEEE, 2017: 1-5.
[15]   赵伟, 杨灿军, 陈鹰 水下滑翔机浮力调节系统设计及动态性能研究[J]. 浙江大学学报: 工学版, 2009, 43 (10): 1772- 1776
ZHAO Wei, YANG Can-jun, CHEN Ying Design and dynamic performance study of buoyancy control system for water glider[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (10): 1772- 1776
[16]   余立中 我国的海洋剖面探测浮标-COPEX[J]. 海洋技术, 2003, 22 (3): 47- 55
YU Li-zhong The China’s ocean profiling explorer – COPEX[J]. Ocean Technology, 2003, 22 (3): 47- 55
doi: 10.3969/j.issn.1003-2029.2003.03.011
[17]   PAUSCH S, BELOW D, HARDY K Under high pressure: spherical glass floatation and instrument housing in deep ocean research[J]. Marine Technology Society Journal, 2009, 43 (5): 105- 109
doi: 10.4031/MTSJ.43.5.15
[18]   MILLERO F, CHEN C, BRADSHAW A, et al A new high pressure equation of state for seawater[J]. Marine Geodesy, 1980, 5 (4): 367- 370
[19]   FOFONOFF N, MILLARD R Algorithms for computation of fundamental properties of seawater[J]. Unesco Technical Papers in Marine Science, 1983, 44: 1- 53
[1] PENG Sheng-hua, ZHANG Xin, HE Jian-jun. Argon plasma induced quantum well intermixing technology[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 1057-1061.