Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (1): 1-9    DOI: 10.3785/j.issn.1008-973X.2023.01.001
    
Trajectory planning of TBM disc cutter changing robot based on time-jerk optimization
Zhi-tong TAO(),Jian-feng TAO*(),Cheng-jin QIN,Cheng-liang LIU
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
Download: HTML     PDF(1393KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A trajectory planning method based on improved particle swarm optimization (PSO) algorithm was proposed in order to improve the working efficiency of tunnel boring machine (TBM) disc cutter changing robot and reduce the motion jerk in the process of tool changing. The kinematics of the redundant joint robot was analyzed by using the position and pose separation method and the joint variable minimization strategy. The target trajectory was mapped from Cartesian space to joint space by using the inverse solution. The jerk continuous joint trajectory was constructed by using 5-degree NURBS curve for each joint. The objective function was constructed by the time jerk optimization, and the optimal time series was solved by using the improved PSO algorithm so as to complete the trajectory optimization. The trajectory planning of specific disc cutter change task was conducted, and the optimal trajectory of each joint was obtained. The optimization results show that the proposed trajectory planning method can provide an ideal trajectory for each joint of the tool changing robot and has strong trajectory tracking ability. The 5th NURBS interpolation method and the improved PSO optimization algorithm were used to ensure the shortest time and minimum impact of the trajectory, and improve the efficiency and stability of the operation.



Key wordstunnel boring machine disc cutter changing robot      trajectory planning      improved particle swarm optimization      time jerk optimization      5th NURBS curve     
Received: 30 March 2022      Published: 17 January 2023
CLC:  U 45  
  TP 242  
Fund:  国家重点研发计划资助项目(2018YFB1306703)
Corresponding Authors: Jian-feng TAO     E-mail: taozhitong@sjtu.edu.cn;jftao@sjtu.edu.cn
Cite this article:

Zhi-tong TAO,Jian-feng TAO,Cheng-jin QIN,Cheng-liang LIU. Trajectory planning of TBM disc cutter changing robot based on time-jerk optimization. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 1-9.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.01.001     OR     https://www.zjujournals.com/eng/Y2023/V57/I1/1


基于时间冲击最优的TBM换刀机器人轨迹规划

为了提高隧道掘进机(TBM)换刀机器人的工作效率,减小换刀过程中的运动冲击,提出基于改进型粒子群优化(PSO)算法的轨迹优化方法. 采用位姿分离法与关节变量最小策略,对冗余关节机器人进行运动学分析. 利用所求的逆解,将目标轨迹由笛卡尔空间映射到关节空间. 针对每个关节使用5次NURBS曲线构造冲击连续的关节轨迹,以时间冲击最优构造目标函数,采用改进型PSO算法求解出最优时间序列,完成对轨迹的优化. 通过对特定的换刀任务进行轨迹规划,得到各关节的优化轨迹. 优化结果表明,提出的轨迹规划方法可以为换刀机器人各关节提供理想的轨迹,具有较强的轨迹跟踪能力. 利用5次NURBS插值法与改进型PSO优化算法,可以保证轨迹的时间最短与冲击最小,提高了运行的效率与平稳性.


关键词: TBM换刀机器人,  轨迹规划,  改进型粒子群优化,  时间冲击最优,  5次NURBS曲线 
Fig.1 Schematic diagram of joint of disc cutter changing robot
Fig.2 Mechanism diagram of disc cutter changing robot
Fig.3 Kinematic model of disc cutter changing robot
i $a{\text{/mm}}$ $\alpha {\text{/} }(^{\circ})$ $d{\text{/mm}}$ ${\rm{offset}}/{\rm{mm}}$ $\theta {\text{/} }(^{\circ })$
1 0 0 0~3480 0 0
2 0 0 0~390 1147 0
3 0 0 364 0 ?90~90
4 0 ?90 0 0 ?30~90
5 0 90 0~460 1204 0
6 0 0 0 0 ?45~45
7 0 ?90 0 0 ?90~75
8 0 90 764 0 ?90~90
Tab.1 DH table of disc cutter changing robot
Fig.4 Flow chart of trajectory optimization
Fig.5 Sampling diagram of spatial path
位置点 d/mm θ/(°)
关节1 关节2 关节5 关节3 关节4 关节6 关节7 关节8
1 0 0 0 0 0 0 0 0
2 14.38 2.57 103.18 ?29.01 ?5.42 17.01 5.42 3.01
3 81.67 14.58 217.03 ?25.23 ?6.28 33.03 6.28 10.23
4 225.76 40.31 365.02 ?18.77 ?8.12 49.05 8.11 15.77
5 378.41 67.57 428.21 ?18.78 ?8.57 65.06 8.56 18.78
6 538.07 96.08 460.00 ?16.90 ?11.21 81.08 11.20 19.07
7 686.70 122.62 460.00 ?25.12 ?12.87 76.79 12.86 13.12
8 830.28 148.26 460.00 ?30.61 ?13.65 62.07 13.65 10.61
9 967.20 172.71 460.00 ?30.61 ?13.65 47.35 13.65 11.61
10 1125.65 201.00 460.00 ?25.60 ?16.14 32.63 16.14 10.60
11 1291.57 230.63 460.00 ?20.02 ?20.54 17.91 20.54 6.02
12 1472.53 263.34 460.00 ?16.89 ?24.43 4.85 24.42 6.21
Tab.2 Joints position list
$ i $ $v_{\rm{p}}/(\mathrm{m}\mathrm{m}\cdot\mathrm{s^{-1} })$ $a_{\rm{p}}/(\mathrm{m}\mathrm{m}\cdot{\mathrm{s} }^{-2})$ $j_{\rm{p}}/(\mathrm{m}\mathrm{m}\cdot{\mathrm{s} }^{-3})$
1 400 500 500
2 120 350 400
5 120 300 400
i vr/((°)·s?1) ar/((°)·s?2) jr/((°)·s?3)
3 75 45 45
4 60 30 40
6 80 50 45
7 70 45 30
8 90 50 45
Tab.3 Joints kinematic constraints
Fig.6 Translation joints motion curve of disc cutter changing robot
Fig.7 Rotation joints motion curve of disc cutter changing robot
Fig.8 Comparison of optimal value convergence
Fig.9 Spatial optimization trajectory
[1]   GUO D, LI J, JIANG S H, et al Intelligent assistant driving method for tunnel boring machine based on big data[J]. Acta Geotechnica, 2022, 17 (4): 1019- 1030
doi: 10.1007/s11440-021-01327-1
[2]   李琳, 余海东, 陶建峰, 等 变刚度条件下隧道掘进机撑靴液压缸的动态特性[J]. 上海交通大学学报, 2017, 51 (9): 1058- 1064
LI Lin, YU Hai-dong, TAO Jian-feng, et al Vibration performance analysis for the gripper cylinder of tunnel boring machine with variable stiffness[J]. Journal of Shanghai Jiaotong University, 2017, 51 (9): 1058- 1064
[3]   徐姣姣, 杨航, 郜卫鹏, 等 一种适用于机器人换刀的新型滚刀刀座设计与分析[J]. 隧道建设(中英文), 2020, 40 (Supple.2): 319- 324
XU Jiao-jiao, YANG Hang, GAO Wei-peng, et al Design and analysis of a new cutter holder of disc cutter suitable for robot change[J]. Tunnel Construction, 2020, 40 (Supple.2): 319- 324
[4]   王明斗, 陶建峰, 覃程锦, 等 空间余量最优的拼装机轨迹规划[J]. 浙江大学学报: 工学版, 2017, 51 (3): 453- 460
WANG Ming-dou, TAO Jian-feng, QIN Cheng-jin, et al Trajectory planning for segment erector based on optimal space allowance[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (3): 453- 460
[5]   赵京, 龚世秋, 张自强 7自由度拟人臂仿人运动的逆运动学解析解[J]. 机械工程学报, 2018, 54 (21): 25- 32
ZHAO Jing, GONG Shi-qiu, ZHANG Zi-qiang Analytical inverse kinematics of anthropomorphic movements for 7-DOF humanoid manipulators[J]. Journal of Mechanical Engineering, 2018, 54 (21): 25- 32
doi: 10.3901/JME.2018.21.025
[6]   SHEN L, PENG Y. Study on trajectory optimization algorithm of industrial robot in joint space [C]// Journal of Physics: Conference Series. Zhuhai: IOP Publishing, 2020: 012206.
[7]   BOSCARIOL P, GASPARETTO A, VIDONI R. Jerk-continuous trajectories for cyclic tasks [C]// ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Chicago: ASME, 2012: 1277-1286.
[8]   秦超, 梁喜凤, 路杰, 等 七自由度番茄收获机械手的轨迹规划与仿真[J]. 浙江大学学报:工学版, 2018, 52 (7): 1260- 1266
QIN Chao, LIANG Xi-feng, LU Jie, et al Trajectory planning and simulation for 7-DOF tomato harvesting manipulator[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (7): 1260- 1266
[9]   XU Z, WEI S, WANG N, et al. Trajectory planning with Bezier curve in Cartesian space for industrial gluing robot [C]// International Conference on Intelligent Robotics and Applications. Cham: Springer, 2014: 146-154.
[10]   BUREERAT S, PHOLDEE N, RADPOKDEE T, et al Self-adaptive MRPBIL-DE for 6D robot multiobjective trajectory planning[J]. Expert Systems with Applications, 2019, 136: 133- 144
doi: 10.1016/j.eswa.2019.06.033
[11]   XIDIAS E K Time-optimal trajectory planning for hyper-redundant manipulators in 3D workspaces[J]. Robotics and Computer-Integrated Manufacturing, 2018, 50: 286- 298
doi: 10.1016/j.rcim.2017.10.005
[12]   LU S, DING B, LI Y Minimum-jerk trajectory planning pertaining to a translational 3-degree-of-freedom parallel manipulator through piecewise quintic polynomials interpolation[J]. Advances in Mechanical Engineering, 2020, 12 (3): 1- 18
[13]   郭勇, 赖广 工业机器人关节空间轨迹规划及优化研究综述[J]. 机械传动, 2020, 44 (2): 154- 165
GUO Yong, LAI Guang Review of joint space trajectory planning and optimization for industrial robot[J]. Journal of Mechanical Transmission, 2020, 44 (2): 154- 165
[14]   LIU Y, DU Z, ZHANG S. Minimum-time trajectory planning for residual vibration suppression of flexible manipulator carrying a payload [C]// IOP Conference Series: Materials Science and Engineering. Xiamen: IOP Publishing, 2020, 853(1): 012044.
[15]   HUANG J, HU P, WU K, et al Optimal time-jerk trajectory planning for industrial robots[J]. Mechanism and Machine Theory, 2018, 121: 530- 544
doi: 10.1016/j.mechmachtheory.2017.11.006
[16]   LAN J, XIE Y, LIU G, et al A multi-objective trajectory planning method for collaborative robot[J]. Electronics, 2020, 9 (5): 859
doi: 10.3390/electronics9050859
[17]   贾连辉, 姜礼杰, 杜孟超, 等. 一种盾构机用高效换刀机器人: CN210790958U [P]. 2020−06−19.
JIA Lian-hui, JIANG Li-jie, DU Meng-chao, et al. An efficient disc cutter changing robot for shield machine: CN210790958U [P]. 2020−06−19.
[1] Ye-he ZHAO,Da-xin LIU,Zhen-yu LIU,Jian-rong TAN. Time-optimal trajectory planning of manipulator based on multi-group competition squirrel search algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2321-2329.
[2] Xiao-chen SONG,Xiao-fan YAO,Shang-jun YE. Trajectory optimization of small supersonic unmanned aerial vehicle based on pseudo-spectral method[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 193-201.
[3] Lin LI,Ze-hao XUE,Di CAI,Tie ZHANG. Kinematics and gait planning of wall-climbing quadruped robot for pipeline inner wall[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2286-2297.
[4] Jie LIU,Xian-zhou DONG,Wei HAN,Xin-wei WANG,Chun LIU,Jun JIA. Trajectory planning for carrier aircraft on deck using Newton Symplectic pseudo-spectral method[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1827-1838.
[5] Hong-wu GUO,Lei PU,Yu-xie ZHANG,Jing WU,Rui ZHAO,Zhong-fu TAN. Optimization model for integrated complementary system of wind-PV-pump storage based on rough set theory[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 801-810.
[6] QIN Chao, LIANG Xi-feng, LU Jie, PENG Ming, JIN Chao-qi. Trajectory planning and simulation for 7-DoF tomato harvesting manipulator[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1260-1266.
[7] LIU Xiang qi, MENG Zhen, NI Jing, ZHU Ze fei. Trajectory planning algorithm for hydraulic servo manipulator of three freedom[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1776-1782.
[8] WANG Hui-fang, ZHU Shi-qiang, WU Wen-xiang. INSGA-Ⅱ based multi-objective trajectory planning for manipulators[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 622-628.
[9] ZHENG Hui-Feng, ZHOU Xiao-Jun, ZHANG Yang. Time optimization based trajectory planning of ultrasonic inspection[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 29-33+183.