Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (10): 2126-2132    DOI: 10.3785/j.issn.1008-973X.2023.10.021
    
Quantitative study on incipient motion of organic sediments with bio-adhesive effect
Si-ning ZHAN1(),Dong-dong YUAN2,Yong-gang LIN3,Yi-ping ZHANG1,Yong-chao ZHOU1,*(),Tu-qiao ZHANG1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
2. Powerchina Environmental Epaperngineering Co Ltd., Hangzhou, 310058, China
3. Powerchina Roadbridge Group Co Ltd., Hangzhou, 310058, China
Download: HTML     PDF(972KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A calculation method of the critical shear stress considering the microbial incubation time and organic matter content was proposed to study the influence of microbial biofilm on the erosion behavior of sediment. An open channel flume experiment was conducted to analyze the effects of microbial incubation time and organic matter content on the critical shear stress. The stable floc size constant γ was introduced to quantify the bio-adhesive effect. An empirical formula for the critical shear stress of sediment initiation with organic matter under microbial activity was proposed based on the theory of sediment initiation. Results showed that the critical shear stress increased first and then decreased over time. The peak value was reached around 10 or 15 days, and the critical shear stress reached 0.072~0.117 N/m2. The critical starting shear stress decreased with the increase of organic matter content. The correlation between the bio-adhesive effect and γ was calculated and a significant negative correlation was found. Pearson correlation coefficient was ?0.767. The calculated value of the critical starting shear stress formula was in good agreement with the experimental value.



Key wordssewer sediment      biological activities      organic matter content      critical shear stress      floc strength     
Received: 01 December 2022      Published: 18 October 2023
CLC:  TV 142.1  
Fund:  国家自然科学基金资助项目(51878597)
Corresponding Authors: Yong-chao ZHOU     E-mail: 22012243@zju.edu.cn;zhoutang@zju.edu.cn
Cite this article:

Si-ning ZHAN,Dong-dong YUAN,Yong-gang LIN,Yi-ping ZHANG,Yong-chao ZHOU,Tu-qiao ZHANG. Quantitative study on incipient motion of organic sediments with bio-adhesive effect. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2126-2132.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.10.021     OR     https://www.zjujournals.com/eng/Y2023/V57/I10/2126


微生物作用下含有机质沉积物起动的定量研究

为了探究微生物作用对沉积物起动规律的影响,提出考虑微生物培养时间和有机质含量的沉积物临界起动剪切应力计算方法. 通过明渠冲刷试验分析了微生物培养时间及有机质含量对沉积物临界起动剪切应力的影响规律;引入絮体强度常数γ值对微生物黏性作用进行定量表征;基于沉积物起动理论,提出在微生物作用下沉积物的临界起动剪切应力经验公式. 结果表明,随着微生物作用时间的增加,临界起动剪切应力先增大后减小,并在10或15 d左右达到峰值,最终达到0.072~0.117 N/m2. 临界起动剪切应力随着有机质含量的增大而减小. 微生物黏性作用与γ值呈现显著的负相关,皮尔逊相关系数为?0.767,临界起动剪切应力公式计算值与实验值较为吻合.


关键词: 沉积物,  微生物活动,  有机质含量,  临界起动剪切应力,  絮体强度 
Fig.1 Scheme of experimental open channel flume
Fig.2 Scheme of cylinder stirring experiment
N/(r·min?1) G/s?1
160 78.93
175 90.29
190 102.15
205 114.48
220 127.27
Tab.1 Stirring speed and velocity gradient of cylinder stirring experiment
目数 ρ/(g·cm?3) d50/mm Cu
60 1.409 0.427 1.51
Tab.2 Physical parameters of plastic sand
序号 T/d OMC/% 序号 T/d OMC/% 序号 T/d OMC/%
1 0 2.0 13 10 5.0 25 20 8.0
2 0 3.5 14 10 6.5 26 25 2.0
3 0 5.0 15 10 8.0 27 25 3.5
4 0 6.5 16 15 2.0 28 25 5.0
5 0 8.0 17 15 3.5 29 25 6.5
6 5 2.0 18 15 5.0 30 25 8.0
7 5 3.5 19 15 6.5 31 30 2.0
8 5 5.0 20 15 8.0 32 30 3.5
9 5 6.5 21 20 2.0 33 30 5.0
10 5 8.0 22 20 3.5 34 30 6.5
11 10 2.0 23 20 5.0 35 30 8.0
12 10 3.5 24 20 6.5
Tab.3 Incubation time and organic matter content of sediments
Fig.3 Change of critical shear stress at different experiment conditions
Fig.4 Average floc diameter of sediments at different G
Fig.5 Change of stable floc size constant with microbial activity time for different sediments
Fig.6 Comparison of calculated and experimental values of stable floc size constant
Fig.7 Relationship between bio-adhesive effect and stable floc size constant
Fig.8 Comparison of calculated and experimental values of critical shear stress
[1]   朱永明. 合流制排水管道沉积物调查研究[D]. 武汉: 武汉理工大学, 2011: 9-11.
ZHU Yong-ming. Research on sediment in combined sewer [D]. Wuhan: Wuhan University of Technology, 2011: 9-11.
[2]   BANASIAK R Hydraulic performance of sewer pipes with deposited sediments[J]. Water Science and Technology, 2008, 57 (11): 1743- 1748
doi: 10.2166/wst.2008.287
[3]   MONTES C, BERARDI L, KAPELAN Z, et al Predicting bedload sediment transport of non-cohesive material in sewer pipes using evolutionary polynomial regression–multi-objective genetic algorithm strategy[J]. Urban Water Journal, 2020, 17 (2): 154- 162
doi: 10.1080/1573062X.2020.1748210
[4]   MONTES C, KAPELAN Z, SALDARRIAGA J Predicting non-deposition sediment transport in sewer pipes using random forest[J]. Water Research, 2021, 189: 116639
doi: 10.1016/j.watres.2020.116639
[5]   黄乃先, 齐一凡, 金伟 排水管道沉积物控制的研究进展[J]. 环境工程技术学报, 2021, 11 (3): 507- 513
HUANG Nai-xian, QI Yi-fan, JIN Wei Research progress on the control of sediments in the drainage pipe[J]. Journal of Environmental Engineering Technology, 2021, 11 (3): 507- 513
[6]   SHIELDS A. Application of similarity principles and turbulence research to bed-load movement [D]. California: California Institute of Technology, 1936: 9-20.
[7]   TAIT S J, RUSHFORTH P J, SAULA J A laboratory study of the erosion and transport of cohesive-like sediment mixtures in sewers[J]. Water Science and Technology, 1998, 37 (1): 163- 170
doi: 10.2166/wst.1998.0040
[8]   方红卫, 尚倩倩, 府仁寿, 等 泥沙颗粒生长生物膜后起动的实验研究——Ⅱ: 起动流速计算[J]. 水科学进展, 2011, 22 (3): 301- 306
FANG Hong-wei, SHANG Qian-qian, FU Ren-shou, et al Experimental study of the effect of biofilm formation on sediment incipient motion Ⅱ: incipient velocity calculation[J]. Advances in Water Science, 2011, 22 (3): 301- 306
[9]   FANG H, SHANG Q, CHEN M, et al Changes in the critical erosion velocity for sediment colonized by biofilm[J]. Sedimentology, 2014, 61 (3): 648- 659
doi: 10.1111/sed.12065
[10]   SECO I, GOMEZ VALENTIN M, SCHELLART A, et al Erosion resistance and behavior of highly organic in-sewer sediment[J]. Water Science and Technology, 2014, 69 (3): 672- 679
doi: 10.2166/wst.2013.761
[11]   ZHOU Y, YAO X, GU Y, et al Biological effects on incipient motion behavior of sediments with different organic matter content[J]. Journal of Soils and Sediments, 2021, 21 (1): 627- 640
doi: 10.1007/s11368-020-02807-9
[12]   马妍. 排水系统管内沉积物的冲蚀输移特性与规律研究[D]. 杭州: 浙江大学, 2014: 35-36.
MA Yan. Study on erosion characteristics and transport principles of sewer sediment in sewerage system [D]. Hangzhou: Zhejiang University, 2014: 35-36.
[13]   钱宁, 万兆惠. 泥沙运动力学[M]. 北京: 科学出版社, 1983: 85-105.
[14]   LICK W, JIN L, GAILANI J Initiation of movement of quartz particles[J]. Journal of Hydraulic Engineering, 2004, 130 (8): 755- 761
doi: 10.1061/(ASCE)0733-9429(2004)130:8(755)
[15]   CAMP T R Velocity gradients and internal work in fluid motion[J]. Journal of the Boston Society of Civil Engineers, 1943, 30: 219- 230
[16]   YIN W, WANG Y, LIU L, et al Biofilms: the microbial “protective clothing” in extreme environments[J]. International Journal of Molecular Sciences, 2019, 20 (14): 3423
doi: 10.3390/ijms20143423
[17]   AMOS C L, DROPPO I G, GOMEZ E A, et al The stability of a remediated bed in Hamilton Harbour, Lake Ontario, Canada[J]. Sedimentology, 2003, 50 (1): 149- 168
doi: 10.1046/j.1365-3091.2003.00542.x
[18]   WILEN B M, JIN B, LANT P The influence of key chemical constituents in activated sludge on surface and flocculating properties[J]. Water Research, 2003, 37 (9): 2127- 2139
doi: 10.1016/S0043-1354(02)00629-2
[19]   LI X Y, YANG S F Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41 (5): 1022- 1030
doi: 10.1016/j.watres.2006.06.037
[20]   尚倩倩, 方红卫, 赵慧明, 等 泥沙颗粒生长生物膜后沉降的实验研究Ⅰ: 实验设计及粒径变化[J]. 水利学报, 2012, 43 (3): 275- 281
SHANG Qian-qian, FANG Hong-wei, ZHAO Hui-ming, et al Experiment on the biofilm effects on sediment setting Ⅰ: experimental design and grading variation[J]. Journal of Hydraulic Engineering, 2012, 43 (3): 275- 281
[21]   RIGHETTI M, LUCARELLI C May the Shields theory be extended to cohesive and adhesive benthic sediments?[J]. Journal of Geophysical Research: Oceans, 2007, 112 (5): 1- 14
[22]   LEENTVAAR J, REBHUN M Strength of ferric hydroxide flocs[J]. Water Research, 1983, 17 (8): 895- 902
doi: 10.1016/0043-1354(83)90163-X
[23]   PARKER D S, KAUFMAN W J, JENKINS D Floc breakup in turbulent flocculation processes[J]. Journal of the Sanitary Engineering Division, 1972, 98 (1): 79- 99
doi: 10.1061/JSEDAI.0001389
[24]   钱栋. 生物作用下排水管道沉积物起动规律研究[D]. 杭州: 浙江大学, 2017: 42-45.
QIAN Dong. Study on laws for the incipient motion of sewer sediments with biological activities [D]. Hangzhou: Zhejiang University, 2017: 42-45.
[1] SHAO Wei-yun, MA Yan, ZHOU Yong-chao, DU Xu, GUAN Yao. Erosion characteristics of sewer sediment with biological actions[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1075-1079.
[2] XU Ri-qing, CHANG Shuai, YU Yuan-hong, LU Jian-yang. Model of strength developedwithresponse surface methodology for solidified marine soft clay of Hangzhou[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1941-1946.