1. Key Laboratory of Engineering Geophysical Prospecting and Detection of Chinese Geophysical Society, Wuhan 430000, China 2. School of Water Conservancy and Civil Engineering, Zhengzhou University, Zhengzhou 450001, China 3. School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
A cross-scale mesh identification method was presented to efficiently create two-dimensional scaled boundary finite element method-finite element method (SBFEM-FEM) cross-scale coupled meshes. The method combined the artificially controllable characteristics of CAD to identify, cut, and organize graphic line segments generating effective nodes and line segments. A reasonable polygonal-scaled boundary element or finite element was generated based on the topological relationship between the nodes and the line segments and the construction of the closed domain. The nodes and element information were assembled. The two-dimensional SBFEM-FEM cross-scale coupled mesh suitable for numerical analysis was produced. The stress and deformation distribution law and peak value of the wall obtained by different mesh generating methods were compared and studied to verify the validity and calculation accuracy of the generated SBFEM-FEM cross-scale coupling mesh based on a dam project. Results showed that the error of the principal stress obtained by the conventional large-scale finite element mesh simulation could exceed 48%, the error of the results obtained based on the proposed cross-scale fine numerical mesh could not exceed 5%, and the number of mesh elements was greatly reduced. The cross-scale mesh identification method can provide strong support for the anti-seepage structures in dam engineering.
Xiang YU,Yuan-ping LAI,Yu-ke WANG,Yong-qian QU,Hao-ran ZHENG. Identification method of cross-scale mesh and application in analysis of cutoff wall. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2116-2125.
Fig.1Boundary discrete element in scaled boundary finite element method
Fig.2Schematic diagram of cross-scale mesh transition method
Fig.3Schematic diagram of cantilever beam structure
Fig.4Simplified schematic diagram of cantilever beam structure
Fig.5Basic mesh diagram of cantilever beam structure
节点编号
1
2
3
4
5
6
7
8
1
—
1
—
—
—
1
—
—
2
1
—
1
1
—
—
—
—
3
—
1
—
—
1
—
—
—
4
—
1
—
—
1
—
1
—
5
—
—
1
1
—
—
—
1
6
1
—
—
—
—
—
1
—
7
—
—
—
1
—
1
—
1
8
—
—
—
—
1
—
1
—
Tab.1Node connection relation matrix A
Fig.6Relationship diagram of node connection
节点编号
1
2
3
4
5
6
7
8
连接数目
2
2
1
2
1
1
1
0
Tab.2Number of node connections vector
Fig.7Identification method and process of unit generation
Fig.8Cross-scale mesh of cantilever beam structure of final identification
Fig.9Sketch of material distribution and load steps of embankment
Fig.10Schematic diagram of force on anti-seepage system
材料
$ {\gamma _{\text{d}}} $/(kg·m?3)
$ {\gamma _{\text{f}}} $/(kg·m?3)
$ k $
$ {k_{{\text{ur}}}} $
$ \;\beta $
$ {n_{{\text{ur}}}} $
坝体
16.3
982
300
360
0.34
0.34
坝基
16.5
982
320
390
0.30
0.30
材料
$ {R_{\text{f}}} $
$ {k_{\text{b}}} $
$ q $
$ c $/kPa
$ \varphi $/(°)
$ \Delta \varphi $/(°)
坝体
0.95
200
0.30
22.2
11.3
0
坝基
0.95
215
0.30
21.6
11.8
0
Tab.3Static parameters of dam body and foundation
材料
$\; \rho$/(kg·m?3)
$ E/{\text{MPa}} $
$ \nu $
混凝土防渗墙
2 400
30 000
0.167
基岩
2 400
200
0.350
Tab.4Static parameters of wall and bedrock
位置
$ K $
$ j $
$ \delta /(^\circ ) $
$ {R_{\text{f}}} $
$ c/{\text{kPa}} $
墙与坝体
757
0.8
11.0
0.89
10.5
墙与坝基
757
0.8
11.0
0.89
10.5
Tab.5Static parameters of contact surface
Fig.11Diagram of local elements of wall and soil
Fig.12Coupling SBFEM-FEM mesh after mesh recognition
M
N*
N
n*
H1/m
H2/m
1
14 906
14 560
144
0.500
0.125
2
15 381
14 968
552
0.125
0.125
3
48 075
47 634
552
0.125
0.125
Tab.6Information of node and unit
Fig.13Element number of dam and wall for three conditions
Fig.14Distribution of dam displacement after impoundment
Fig.15Horizontal displacement of wall after impoundment
Fig.16Maximum and minimum principal stress distribution of wall in upstream after impoundment
Fig.17Maximum and minimum principal stress distribution of wall in downstream after impoundment
Fig.18Maximum and minimum principal stress distribution of embankment in downstream after impoundment
模型
上游 $ {\sigma _1} $
上游 $ {\sigma _3} $
下游 $ {\sigma _1} $
下游 $ {\sigma _3} $
F/MPa
D/%
F/MPa
D/%
F/MPa
D/%
F/MPa
D/%
1
3.76
19.7
?0.16
48.80
0.26
29.50
?3.37
20.88
2
4.63
1.11
?0.29
4.43
0.36
3.74
?4.20
1.43
3
4.69
—
?3.04
—
0.38
—
?4.26
—
Tab.7Principal stress of wall for three conditions
[1]
崔焕平, 崔燕平, 王宗敏 混凝土非线性有限元分析中的网格尺寸效应[J]. 混凝土, 2007, (6): 27- 29 CUI Huan-ping, CUI Yan-ping, WANG Zong-min Mesh size effect in nonlinear finite element analysis of concrete[J]. Concrete, 2007, (6): 27- 29
[2]
邹德高, 刘锁, 陈楷, 等 基于四叉树网格和多边形比例边界有限元方法的岩土工程非线性静动力分析[J]. 岩土力学, 2017, 38 (增2): 33- 40 ZOU De-gao, LIU Suo, CHEN Kai, et al Nonlinear static and dynamic analysis for geotechnical engineer-ing based on quadtree mesh and polygon scaled bou-ndary finite element method[J]. Rock and Soil Mechanics, 2017, 38 (增2): 33- 40
[3]
ZOU D, CHEN K, KONG X, et al An enhanced octree polyhedral scaled boundary finite element meth-od and its applications in structure analysis[J]. Engineering Analysis with Boundary Elements, 2017, 84: 87- 107
doi: 10.1016/j.enganabound.2017.07.007
[4]
ZOU D, TENG X, CHEN K, et al An extended polygon scaled boundary finite element method for the nonlinear dynamic analysis of saturated soil[J]. Engineering Analysis with Boundary Elements, 2018, 91: 150- 161
doi: 10.1016/j.enganabound.2018.03.019
[5]
邹德高, 陈楷, 刘锁, 等 非线性比例边界有限元在面板坝分析中的应用[J]. 土木与环境工程学报(中英文), 2019, 41 (3): 11- 18 ZOU De-gao, CHEN Kai, LIU Suo, et al Application of nonlinear scaled boundary polygon element method in analysis of concrete face rockfill dam[J]. Journal of Civil and Environmental Engineering, 2019, 41 (3): 11- 18
[6]
ZOU D, SUI Y, CHEN K Plastic damage analysis of pile foundation of nuclear power plants under beyond-design basis earthquake excitation[J]. Soil Dynamics and Earthquake Engineering, 2020, 136: 106179
doi: 10.1016/j.soildyn.2020.106179
[7]
GENES M C, KOCAK S Dynamic soilstructure interaction analysis of layered unbounded media via a coupled finite element/boundary element/scaled boun-dary finite element model[J]. International Journal for Numerical Methods in Engineering, 2005, 62 (6): 798- 823
doi: 10.1002/nme.1212
[8]
BEHNKE R, KALISKE M Thermomechanical mod-eling of crack propagation in dynamically loaded ela-stomer specimens using a scaled boundary finite ele-ment approach[J]. Pamm, 2015, 15 (1): 121- 122
doi: 10.1002/pamm.201510051
[9]
李上明 基于比例边界有限元法动态刚度矩阵的坝库耦合分析方法[J]. 工程力学, 2013, 30 (2): 313- 317 LI Shang-ming Transient analysis method for dam-r-eservoir interaction based on dynamic stiffness of S-BFEM[J]. Engineering Mechanics, 2013, 30 (2): 313- 317
[10]
YU X, KONG X, ZOU D, et al Linear elastic and plastic-damage analyses of a concrete cut-off wall co-nstructed in deep overburden[J]. Computers and Geotechnics, 2015, 69: 462- 473
[11]
邹德高, 陈楷, 余翔, 等 基于跨尺度精细方法的面板坝面板损伤演化尺寸效应分析[J]. 土木与环境工程学报(中英文), 2019, 41 (6): 36- 42 ZOU De-gao, CHEN Kai, YU Xiang, et al Size effect analysis of face slab damage evolution for high concrete face dam under earthquakes based on cross- scale fine method[J]. Journal of Civil and Environmental Engineering, 2019, 41 (6): 36- 42
[12]
邹德高, 陈楷, 张仁怡, 等 基于SBFEM的心墙坝基座跨尺度精细应力分析[J]. 人民长江, 2019, 50 (9): 168- 174 ZOU De-gao, CHEN Kai, ZHANG Ren-yi, et al Cross-scale refined stress analysis on base-support of core wall concrete dam based on scaled boundary finite element method[J]. Yangtze River, 2019, 50 (9): 168- 174
[13]
ZOU D, CHEN K, KONG X, et al An approach integrating BIM, octree and FEM-SBFEM for highly efficient modeling and seismic damage analysis of building structures[J]. Engineering Analysis with Boundary Elements, 2019, 104: 332- 346
doi: 10.1016/j.enganabound.2019.03.038
[14]
殷德胜, 尹栓, 周宜红 裂缝分析的比例边界有限元与有限元耦合的虚拟结构面模型[J]. 计算力学学报, 2014, 31 (6): 735- 741 YIN De-sheng, YIN Shuan, ZHOU Yi-hong Coupled SBFEM and FEM for crack analysis based on virtual discontinuous surface method[J]. Chinese Journal of Computational Mechanics, 2014, 31 (6): 735- 741
[15]
YANG Z J, DEEKS A J Fully-automatic modelling of cohesive crack growth using a finite element–scaled boundary finite element coupled method[J]. Engineering Fracture Mechanics, 2007, 74 (16): 2547- 2573
doi: 10.1016/j.engfracmech.2006.12.001
[16]
CHEN K, ZOU D, KONG X, et al Elasto-plastic fine-scale damage failure analysis of metro structures based on coupled SBFEM-FEM[J]. Computers and Geotechnics, 2019, 108: 280- 294
doi: 10.1016/j.compgeo.2018.12.030
[17]
QU Y, ZOU D, KONG X, et al Seismic cracking evolution for antiseepage face slabs in concrete faced rockfill dams based on cohesive zone model in explicit SBFEM-FEM frame[J]. Soil Dynamics and Earthquake Engineering, 2020, 133: 106106
doi: 10.1016/j.soildyn.2020.106106
[18]
YE W, LIU J, FANG H, et al High-performance an-alysis of the interaction between plate and multi-laye-red elastic foundation using SBFEM-FEM[J]. Composite Structures, 2019, 214: 1- 11
[19]
陈楷. 基于比例边界有限元的岩土工程精细化分析方法及应用[D]. 大连: 大连理工大学, 2019: 27-38. CHEN Kai. Research on technique and application in refined analysis of complicated geotechnical engineering structures based on scaled boundary finite element method [D]. Dalian: Dalian University of technology, 2019: 27-38.
[20]
李华, 刘晓俭, 钟万勰 二维有限元网格图象的识别[J]. 大连理工大学学报, 1993, (4): 373- 379 LI Hua, LIU Xiao-jian, ZHONG Wan-xie Recognition for two-dimension finite element mesh drawings[J]. Journal of Dalian University of Technology, 1993, (4): 373- 379
[21]
赵大洲, 王延红 一种人机结合式二维有限元网格生成法[J]. 华北水利水电学院学报, 1999, 2: 22- 24 ZHAO Da-zhou, WANG Yan-hong An interactive method to generate 2D finite element mesh[J]. Journalof North China Institute of Water Conservancy and Hydroelectric Power, 1999, 2: 22- 24
[22]
徐思浩, 杨建新 判别二维有限元网格图的简便算法[J]. 计算力学学报, 2001, 18 (1): 61- 63 XU Si-hao, YANG Jian-xin A simple algorithm usedto judge the 2D finite element mesh drawing[J]. Chinese Journal of Computational Mechanics, 2001, 18 (1): 61- 63
doi: 10.3969/j.issn.1007-4708.2001.01.011
[23]
田林, 孙志林 AutoCAD下非结构网格自动生成[J]. 水动力学研究与进展(A辑), 2002, 1: 124- 128 TIAN Lin, SUN Zhi-lin Automatic generation of unstructured grid under AutoCAD[J]. Chinese Journal of Hydrodynamics, 2002, 1: 124- 128
[24]
杨星, 蔡开玺. 二维无结构三角形网格自适应生成技术[J]. 人民长江, 2008, 39(19): 101-104. YANG Xing, CAI Kai-xi, Adaptive generation technology of two-dimensional unstructured triangular mesh[J]. Yangtze River, 2008, 39(19): 101-104.
[25]
冯占荣, 于建群, 王玉杰, 等 一种二维非结构网格改进算法的研究[J]. 燕山大学学报, 2010, 34 (5): 405- 410 FENG Zhan-rong, YU Jian-qun, WANG Yu-jie, et al An improved algorithm for generating two-dimension-al grid[J]. Journal of Yanshan University, 2010, 34 (5): 405- 410
[26]
郭新强. 边界面法四边形网格生成研究与应用[D]. 长沙: 湖南大学, 2011: 10-27. Guo Xin-qiang. Study on quadrilateral mesh generation for the boundary face method and their impleme-ntation [D]. Changsha: Hunan University, 2011: 10-27.
[27]
徐青, 奚鹏飞 四边形网格自动生成方法改进及工程应用[J]. 中国农村水利水电, 2018, 9: 182- 186 XU Qing, XI Peng-fei The method improvement of quadrilateral mesh automatic generation and engineering application[J]. China Rural Water ang Hydropower, 2018, 9: 182- 186
[28]
籍冉冉, 郑晓朋, 雷娜, 等 用于保特征四边形网格生成的改进Morse算法[J]. 大连理工大学学报, 2020, 60 (6): 647- 653 JI Ran-ran, ZHENG Xiao-peng, LEI Na, et al Improved Morse algorithm for feature-preserving quadrilateral mesh generation[J]. Journal of Dalian University of Technology, 2020, 60 (6): 647- 653
[29]
SONG C, WOLF J P The scaled boundary fniteelement methodalias consistent infinitesimal fnite-element cellmethod for elasto-dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 147 (3-4): 329- 355
doi: 10.1016/S0045-7825(97)00021-2
[30]
WOLF J P, SONG C Dynamic-stiffness matrix in time domain of unbounded medium by infinitesimal finite element cell method[J]. Earthquake Engineering and Structural Dynamics, 1994, 11 (23): 1073- 1086
[31]
DUNCAN J M, CHANG C Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96: 1629- 1653
[32]
LI J, ZHANG J, WANG Y, et al Seismic response of earth dam with innovative polymer antiseepage wall[J]. International Journal of Geomechanics, 2020, 20 (7): 4020079
doi: 10.1061/(ASCE)GM.1943-5622.0001664
[33]
WAYNE C G, M. D J. Finite element analyses of retaining wall behavior [J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(12).
[34]
董景刚. 土与结构接触面力学特性研究[D]. 大连: 大连理工大学, 2011: 55-59. DONG Jing-gang. Study on mechanical properties of interface between soil and structure[D]. Dalian: Dalian university of technology, 2011: 55-59.
[35]
傅华, 章为民. 坝基混凝土防渗墙与泥皮接触面试验研究 [C]// 第一届中国水利水电岩土力学与工程学术讨论会. 昆明: 中国水利学会, 2006: 498-500. FU Hua, ZHANG Wei-min. Experimental study on c-ontact surface between concrete cutoff wall and mud cake in dam foundation [C]// 1th National Symposium on Geotechnical Engineering. Kunming: CHES, 2006: 458-500.