|
|
Improved ORB-SLAM algorithm based on motion prediction |
Lin JIANG(),Lin-rui LIU,An-na ZHOU,Lu HAN,Ping-yuan LI |
College of Electrical Information, Southwest Petroleum University, Chengdu 610500, China |
|
|
Abstract An improved ORB-SLAM algorithm based on motion prediction was proposed by considering the influence of the camera’s own motion on the visual SLAM system aiming at the problem that the ORB-SLAM algorithm with fixed point feature extraction and matching strategy has large tracking and positioning error in different motion scenes. The point feature utilization rate of the previous frame and the uniform motion model were used to predict the mutually visual zone between two adjacent frames. The threshold of point feature extraction under different motion states was dynamically adjusted in real time. Then the accuracy of the system was improved while ensuring the stability of the system. A point feature matching optimization strategy based on motion prediction was proposed. The effective matching points within the mutually visual zone were quickly determined based on the uniform motion model. The matching search range was narrowed by combining the image pyramid in order to reduce many invalid matching processes. The comparison experiments were conducted on the TUM data set. Results show that the proposed algorithm not only has good real-time performance, but also improves the accuracy of the system.
|
Received: 09 May 2022
Published: 17 January 2023
|
|
Fund: 国家自然科学基金青年基金资助项目 (51702266);成都市科技资助项目(2022-YF05-00157-SN) |
基于运动预测的改进ORB-SLAM算法
针对不同运动场景下以固定的点特征提取与匹配策略的ORB-SLAM算法存在系统跟踪定位误差较大的问题,考虑相机自身运动对视觉SLAM系统的影响,提出基于运动预测的改进ORB-SLAM算法. 该方法利用上一帧的点特征利用率和匀速运动模型,预测出相邻2帧之间的共视范围,实时动态调整不同运动状态下的点特征提取阈值,在保证系统稳定性的情况下,提高系统的准确性. 提出基于运动预测的点特征匹配优化策略,基于匀速运动模型快速确定出共视范围内的有效待匹配点,结合图像金字塔缩小匹配搜索范围,减少大量的无效匹配过程. 在TUM数据集上进行对比实验,结果表明,提出的算法不仅实时性好,而且提高了系统的精度.
关键词:
改进ORB-SLAM算法,
运动预测,
共视范围,
点特征提取与匹配,
跟踪定位
|
|
[1] |
施俊屹, 查富生, 孙立宁, 等 移动机器人视觉惯性SLAM研究进展[J]. 机器人, 2020, 42 (6): 734- 748 SHI Jun-yi, ZHA Fu-sheng, SUN Li-ning, et al Progress in visual inertial SLAM for mobile robots[J]. Robot, 2020, 42 (6): 734- 748
doi: 10.13973/j.cnki.robot.190685
|
|
|
[2] |
BELTER D, NOWICKI M R Optimization-based legged odometry and sensor fusion for legged robot continuous localization[J]. Robotics and Autonomous Systems, 2019, 111: 110- 124
doi: 10.1016/j.robot.2018.10.013
|
|
|
[3] |
邸凯昌, 万文辉, 赵红颖, 等 视觉SLAM技术的进展与应用[J]. 测绘学报, 2018, 47 (6): 770- 779 DI Kai-chang, WAN Wen-hui, ZHAO Hong-ying, et al Progress and application of visual SLAM[J]. Journal of Surveying and Mapping, 2018, 47 (6): 770- 779
doi: 10.11947/j.AGCS.2018.20170652
|
|
|
[4] |
MUR-ARTAL R, TARDOS J D ORB-SLAM2: a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2017, 31 (5): 1255- 1265
|
|
|
[5] |
李国竣, 徐延海, 段杰文, 等 利用局部自适应阈值方法提取ORB-SLAM特征点[J]. 测绘通报, 2021, (9): 32- 36 LI Guo-jun, XU Yan-hai, DUAN Jie-wen, et al Feature points extraction for ORB-SLAM using local adaptive threshold method[J]. Bulletin of Surveying and Mapping, 2021, (9): 32- 36
doi: 10.13474/j.cnki.11-2246.2021.0269
|
|
|
[6] |
LI Shi-ji, WANG Qing, LI Jia-yue Improved ORB matching algorithm based on adaptive threshold[J]. Journal of Physics: Conference Series, 2021, 1871 (1): 12- 14
|
|
|
[7] |
胡山山, 陈熙源, 卢飞平 基于改进ORB特征点的LK光流算法[J]. 传感技术学报, 2021, 34 (1): 21- 26 HU Shan-shan, CHEN Xi-yuan, LU Fei-ping A LK optical flow algorithm based on improved ORB feature points[J]. Chinese Journal of Sensors and Sensors, 2021, 34 (1): 21- 26
doi: 10.3969/j.issn.1004-1699.2021.01.004
|
|
|
[8] |
张一, 姜挺, 江刚武, 等 适用于高精度同时定位与地图构建的均衡化亚像素ORB特征提取方法[J]. 光学精密工程, 2018, 26 (10): 2575- 2583 ZHANG Yi, JIANG Ting, JIANG Gang-wu, et al An equalization subpixel ORB feature extraction method for high precision simultaneous localization and map construction[J]. Optics and Precision Engineering, 2018, 26 (10): 2575- 2583
doi: 10.3788/OPE.20182610.2575
|
|
|
[9] |
GAN Yu, ZHANG Jian-hua, CHEN Kai-qi, et al A dynamic detection method to improve SLAM performance[J]. Optoelectronics Letters, 2021, 17 (11): 693- 698
doi: 10.1007/s11801-021-1022-5
|
|
|
[10] |
AI Yong-bao, TING Rui, YANG Xiao-qiang, et al Visual SLAM in dynamic environments based on object detection[J]. Defence Technology, 2021, 17 (5): 1712- 1721
doi: 10.1016/j.dt.2020.09.012
|
|
|
[11] |
曹力科, 肖晓晖 基于卷帘快门RGB-D相机的视觉惯性SLAM方法[J]. 机器人, 2021, 43 (2): 193- 202 CAO Li-ke, XIAO Xiao-hui A visual-inertial SLAM method based on rolling shutter RGB-D cameras[J]. Robot, 2021, 43 (2): 193- 202
doi: 10.13973/j.cnki.robot.200245
|
|
|
[12] |
刘贵涛, 张雷, 徐方 面向局部弱纹理环境的多双目视觉SLAM[J]. 组合机床与自动化加工技术, 2022, (3): 116- 119 LIU Gui-tao, ZHANG Lei, XU Fang Multi stereo vision SLAM for local weak texture environment[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2022, (3): 116- 119
doi: 10.13462/j.cnki.mmtamt.2022.03.028
|
|
|
[13] |
YANG Yu, XIONG Jing, XU She, et al Passive initialization method based on motion characteristics for monocular SLAM[J]. Complexity, 2019, (3): 8176489-1- 11
|
|
|
[14] |
SONG T, CHEN B, ZHAO F M, et al Research on image feature matching algorithm based on feature optical flow and corner feature[J]. The Journal of Engineering, 2020, 13: 529- 534
|
|
|
[15] |
MA Wei-Ping, WEN Xin-li, CAO Peng-xia Binocular vision object positioning method for robots based on coarse-fine stereo matching[J]. International Journal of Automation and Computing, 2020, 17 (4): 562- 571
doi: 10.1007/s11633-020-1226-3
|
|
|
[16] |
PINKOVICH B, RIVLIN E, ROTSTEIN H Predictive driving in an unstructured scenario using the bundle adjustment algorithm[J]. IEEE Transactions on Control Systems Technology, 2021, 29 (1): 342- 352
doi: 10.1109/TCST.2020.2977306
|
|
|
[17] |
ZHU Y, GAO R, HUANG S, et al. Learning neural representation of camera pose with matrix representation of pose shift via view synthesis [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 9954- 9963.
|
|
|
[18] |
BARFOOT T D, FURGAL P T Associating uncertainty with three-dimensional poses for use in estimation problems[J]. IEEE Transactions on Robotics, 2017, 30 (3): 679- 693
|
|
|
[19] |
KOIDE K, MENEGATTI E General hand–eye calibration based on reprojection error minimization[J]. IEEE Robotics and Automation Letters, 2019, 4 (2): 1021- 1028
doi: 10.1109/LRA.2019.2893612
|
|
|
[20] |
CHOWDHURY F M, TALUKDER K H The unidirectional edge method: a new approach for solving point enclosure problem for arbitrary polygon[J]. Asian Journal of Information Technology, 2012, 4 (5): 537- 540
|
|
|
[21] |
SHAH D, ZAVERI T, TRIVEDI Y N Convex polygon maximization-based hyperspectral endmember extraction algorithm[J]. Journal of the Indian Society of Remote Sensing, 2020, 49 (2): 419- 432
|
|
|
[22] |
MA C, HU X, FU L, et al. An improved ORB algorithm based on multi-feature fusion [C]// IEEE 27th International Symposium on Industrial Electronics. Cairns: IEEE, 2018: 729-734.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|