Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (3): 452-461    DOI: 10.3785/j.issn.1008-973X.2022.00.004
    
Deflection angle perception and recognition method of robot spline assembly based on parameter optimization
Le-wei ZHI(),Jiao-liao CHEN*(),Jia-cai WANG,Fang XU,Li-bin ZHANG
College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310013, China
Download: HTML     PDF(1595KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A method for perception and recognizing the deflection angle of robot spline assembly based on parameter optimization was proposed, aiming at the problem of low assembly success rate due to the deflection angle of the shaft hole during the spline assembly process. According to the characteristics of spline assembly, the force sensor was used to collect the force/torque signal during the spline assembly process, an extreme learning machine (ELM) based on the hybrid whale optimization algorithm (HWOA) was used to identify the force signal of deflection angle and construct a deflection angle experience library. Combined with the support vector data description (SVDD) algorithm the perception of undefined deflection angle and self-updating of deflection angle experience library were realized, and the perception and recognition of deflection angle to guide the robot to complete the spline assembly task was achieved. The experimental results show that the proposed method has a success rate of 98.8% for sensing undefined deflection angles and 98.12% for recognizing known deflection angles, and can effectively guide the spline assembly.



Key wordsrobot      spline assembly      deflection angle perception and recognition      extreme learning machine (ELM)      hybrid whale optimization algorithm (HWOA)     
Received: 05 November 2021      Published: 29 March 2022
CLC:  TP 242  
Fund:  国家重点研发计划项目(2018YFC1309404);浙江省公益技术应用项目研究(LGG18E050023)
Corresponding Authors: Jiao-liao CHEN     E-mail: 1057576180@qq.com;jlchen@zjut.edu.cn
Cite this article:

Le-wei ZHI,Jiao-liao CHEN,Jia-cai WANG,Fang XU,Li-bin ZHANG. Deflection angle perception and recognition method of robot spline assembly based on parameter optimization. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 452-461.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.00.004     OR     https://www.zjujournals.com/eng/Y2022/V56/I3/452


基于参数优化的机器人花键装配偏角感知识别方法

针对花键装配过程中存在轴孔偏角引起的卡阻导致装配成功率低的问题,提出基于参数优化的机器人花键装配偏角感知识别方法. 根据花键装配的特点,利用力传感器采集花键装配过程中的力/力矩信号,基于混合鲸鱼优化算法(HWOA)的极限学习机(ELM)识别偏角的力信号并构建偏角经验库. 结合支持向量数据描述(SVDD)算法,实现了未定义偏角的感知和偏角经验库的自我更新,以及用偏角的感知识别指导机器人完成花键装配任务. 实验结果表明,所提方法对未定义偏角感知成功率和对已知偏角的识别精度分别为98.8%、98.12%,能有效指导机器人进行花键装配.


关键词: 机器人,  花键装配,  偏角感知识别,  极限学习机,  混合鲸鱼优化算法 
Fig.1 Frame structure of support vector data description
Fig.2 Comparison of parameter populations
Fig.3 Deflection angle recognition process of HWOA-ELM
Fig.4 Deflection angle perception and recognition method process in spline assembly
Fig.5 Spline assembly system
Fig.6 Diagram of assembly deflection angle decomposition
Fig.7 Spline shaft hole assembly and top view of partial assembly deflection angle contact state
Fig.8 Part of assembly deflection angle contact state corresponds to six-dimensional force signal
Fig.9 deflection angle fitness iteration results
组别 A/% T0/s 组别 A/% T0/s
95.72 246.8 98.43 543.1
98.24 356.4 98.56 1039.4
Tab.1 Comparison of classifiers with different sample data sizes
分类器 A0/% T/s η
ELM,X 90.33 0.008
ELM,Y 91.26 0.007
DE-ELM,X 93.53 0.032 67.3
DE-ELM,Y 94.61 0.047 77.2
PSO-ELM,X 95.60 0.036 63.4
PSO-ELM,Y 95.28 0.053 75.3
WOA-ELM,X 95.82 0.026 61.3
WOA-ELM,Y 96.22 0.038 66.8
LWA-ELM,X 97.79 0.052 56.9
LWA-ELM,Y 97.86 0.063 57.2
HWOA-SVM,X 96.69 2.018 45.6
HWOA-SVM,Y 95.43 2.322 46.7
HWOA-ELM,X 98.32 0.016 43.5
HWOA-ELM,Y 97.92 0.033 45.8
Tab.2 Performance comparison of different classifiers
Fig.10 Online deflection (X-axis) perception results of SVDD algorithm
未定义偏角标签 样本判断结果 S/%
已知 未知
0,X 402 98 99.6
0,Y 396 104 99.2
1,X 399 101 99.8
1,Y 394 106 98.8
2,X 400 100 100
2,Y 400 100 100
3,X 403 97 99.4
3,Y 403 97 99.4
4,X 396 104 99.2
4,Y 406 94 98.8
Tab.3 Unknown declination recognition situation
Fig.11 Spline assembly adjustment process
[1]   侯瑞 基于齿轴压装的花键自动对齿方法[J]. 机电工程技术, 2020, 49 (12): 214- 216
HOU Rui The method of spline automatic tooth alignment based on gear shaft press fitting[J]. Mechanical and Electrical Engineering Technology, 2020, 49 (12): 214- 216
doi: 10.3969/j.issn.1009-9492.2020.12.067
[2]   陈志英, 刘宏蕾, 周平 航空发动机套齿结构动态装配关系稳健性优化设计[J]. 推进技术, 2018, 39 (1): 160- 168
CHEN Zhi-ying, LIU Hong-lei, ZHOU Ping Robustness optimization of dynamic assembly parameters for aero-engine spline structure[J]. Journal of Propulsion Technology, 2018, 39 (1): 160- 168
[3]   WANG Y, YAO S W, YAN Q D, et al. The contact dynamic modeling and analysis based on spline assembly feature information [C]// Proceedings of the ASME International Mechanical Engineering Congress and Exposition. Phoenix: [s.n.], 2016: 66229.
[4]   LEE D H, NA M W, SONG J B, et al Assembly process monitoring algorithm using force data and deformation data[J]. Robotics and Computer-Integrated Manufacturing, 2019, 56: 149- 156
doi: 10.1016/j.rcim.2018.09.008
[5]   JAKOVLJEVIC Z, PETROVIC P B, HODOLIC J Contact states recognition in robotic part mating based on support vector machines[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59 (1/4): 377- 395
doi: 10.1007/s00170-011-3501-5
[6]   WANG Z, BAI X L, ZHANG S S, et al Information-level real-time AR instruction: a novel dynamic assembly guidance information representation assisting human cognition[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107 (3/4): 1463- 1481
doi: 10.1007/s00170-020-05034-1
[7]   IBRAHIM A A, KIM T, LOVE D J On the achievable rate of generalized spatial modulation using multiplexing under a Gaussian mixture model[J]. IEEE Transactions on Communications, 2016, 64 (4): 1588- 1599
doi: 10.1109/TCOMM.2016.2515624
[8]   WU B L, QU D K, FANG X. Improving efficiency with orthogonal exploration for online robotic assembly parameter optimization [C]// proceedings of 2015 IEEE International Conference on Robotics and Biomimetics. Zhuhai: IEEE, 2015: 958-963.
[9]   杨旭亭, 王孜悦, 李凤鸣, 等 基于过程建模的机器人分阶引导装配方法[J]. 计算机集成制造系统, 2021, 27 (8): 2321- 2330
YANG Xu-ting, WANG Zi-yue, LI Feng-ming, et al Robot phased guided assembly based on process modeling[J]. Computer Integrated Manufacturing Systems, 2021, 27 (8): 2321- 2330
[10]   季旭全, 王君臣, 赵江地, 等 基于机器人与视觉引导的星载设备智能装配方法[J]. 机械工程学报, 2018, 54 (23): 63- 72
JI Xu-quan, WANG Jun-chen, ZHAO Jiang-di, et al Intelligent robotic assembly method of spaceborne equlpment based on visual guidance[J]. Journal of Mechanical Engineering, 2018, 54 (23): 63- 72
doi: 10.3901/JME.2018.23.063
[11]   张思思, 李凤鸣, 杨旭亭, 等 基于接触状态感知发育的机器人柔性装配方法[J]. 控制与决策, 2021, 36 (4): 876- 884
ZHANG Si-si, LI Feng-ming, YANG Xu-ting, et al Flexible assembly method based on contact state perception development[J]. Control and Decision, 2021, 36 (4): 876- 884
[12]   柯懂湘, 潘丽敏, 罗森林, 等 基于随机森林算法的 Android 恶意行为识别与分类方法[J]. 浙江大学学报: 工学版, 2019, 53 (10): 2013- 2023
KE Dong-xiang, PAN Li-min, LUO Sen-lin, et al Android malicious behavior recognition and classification method based on random forest algorithm[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (10): 2013- 2023
doi: 10.3785/j.issn.1008-973X.2019.10.019
[13]   李宝胜, 秦传东 基于粒子群优化的SVM多分类的电动车价格预测研究[J]. 计算机科学, 2020, 47 (2): 421- 424
LI Bao-sheng, QIN Chuan-dong Study on electric vehicle price prediction based on PSO-SVM multi-classification method[J]. Computer Science, 2020, 47 (2): 421- 424
[14]   HUANG G B, ZHU Q Y, SIEW C K Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70 (1/3): 489- 501
doi: 10.1016/j.neucom.2005.12.126
[15]   ZENG J, ROY B, KUMAR D, et al. Proposing several hybrid PSO-extreme learning machine techniques to predict TBM performance [J/OL]. Engineering with Computers, 2021 [2021-10-27]. https://doi.org/10.1007/s00366-020-01225-2.
[16]   卢彩霞, 王新环, 王全义 基于GA-ELM的电压暂降源识别研究[J]. 传感器与微系统, 2020, 39 (12): 64- 67
LU Cai-xia, WANG Xin-huan, WANG Quan-yi Research on recognition of voltage sag source based on GA-ELM[J]. Transducer and Microsystem Technologies, 2020, 39 (12): 64- 67
[17]   AL-ZOUBI A M, FARIS H, ALQATAWNA J, et al Evolving support vector machines using whale optimization algorithm for spam profiles detection on online social networks in different lingual contexts[J]. Knowledge-Based Systems, 2018, 153: 91- 104
doi: 10.1016/j.knosys.2018.04.025
[18]   ALJARAH I, FARIS H, MIRJALILI S Optimizing connection weights in neural networks using the whale optimization algorithm[J]. Soft Computing, 2018, 22 (1): 1- 15
doi: 10.1007/s00500-016-2442-1
[19]   ZHANG J, WANG J S Improved whale optimization algorithm based on nonlinear adaptive weight and golden sine operator[J]. IEEE Access, 2020, 8: 77013- 77048
doi: 10.1109/ACCESS.2020.2989445
[20]   ABD-ELAZIZ M, OLIVA D Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm[J]. Energy Conversion and Management, 2018, 171: 1843- 1859
doi: 10.1016/j.enconman.2018.05.062
[21]   吴润秀, 孙辉, 朱德刚, 等 具有高斯扰动的局部引导粒子群优化算法[J]. 计算机工程与科学, 2016, 38 (6): 1183- 1192
WU Run-xiu, SUN Hui, ZHU De-gang, et al A particle swarm optimization algorithm based on local guidance and Gauss perturbation[J]. Computer Engineering and Science, 2016, 38 (6): 1183- 1192
doi: 10.3969/j.issn.1007-130X.2016.06.018
[1] Yan-lin WANG,Ke-yi WANG,Kui-cheng WANG,Zong-jun MO,Lu-ying WANG. Safety evaluation of bionic-muscle cable-driven lower limb rehabilitation robot system[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 168-177.
[2] Hao-ran MA,Ya-bin DING. Calibration method of laser displacement sensor based on binocular vision[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1634-1642.
[3] Yan HAO,Ya-bin DING,Jin-sheng FU. Hierarchical closed-loop optimization strategy for cumulative error of robot machining system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1142-1149.
[4] Tie ZHANG,Liang-liang HU,Yan-biao ZOU. Identification of improved friction model for robot based on hybrid genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 801-809.
[5] Wei-da LI,Zhu WANG,Hong-miao ZHANG,Juan LI,Hong GU. Mechanical design of bed-type gait rehabilitation training system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 823-830.
[6] Jun-xia JIANG,Xin-yuan ZHANG,Bang-ming TAO,Qun DONG. Design and experiment of remote handling motor replacement device based on passive compliant mechanism[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 855-865.
[7] Wei-da LI,Juan LI,Xiang LI,Hong-miao ZHANG,Hong GU,Yi-peng SHI,Hao-jie ZHANG,Li-ning SUN. Dynamic analysis and parameter optimization of under-actuated heterogeneous lower limb rehabilitation robot[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 222-228.
[8] Tian-ze HAO,Hua-ping XIAO,Shu-hai LIU,Chao ZHANG,Hao MA. Research status of integrated intelligent soft robots[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 229-243.
[9] Ming-min LIU,Dao-kui QU,Fang XU,Feng-shan ZOU,Kai JIA,Ji-lai SONG. Gait planning of quadruped robot based on divergence component of motion[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 244-250.
[10] De-bin LIU,Dan WANG,Bai CHEN,Yao-yao WANG,Li-yao SONG. A survey of supernumerary robotic limbs[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 251-258.
[11] Lin LI,Ze-hao XUE,Di CAI,Tie ZHANG. Kinematics and gait planning of wall-climbing quadruped robot for pipeline inner wall[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2286-2297.
[12] Zi-lin TANG,Xiao GAO,Xiao-hui XIAO. Variable stiffiness control for human-robot cooperative transportation based on imitation learning[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2091-2099.
[13] You-kang DUAN,Xiao-gang CHEN,Jian GUI,Bin MA,Shun-fen LI,Zhi-tang SONG. Continuous kinematics prediction of lower limbs based on phase division[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 89-95.
[14] Jin WANG,Xiang-kun WANG,Jian-hui FU,Guo-dong LU,Chao-chao JIN,Yan-zhi CHEN. Static and dynamic characteristic analysis and structure optimization for crossbeam structure of heavy-duty truss robot[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 124-134.
[15] Da-zhao DONG,Guan-hua XU,Ji-liang GAO,Yue-tong XU,Jian-zhong FU. Online correction algorithm for posture by robot assembly based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 145-152.