Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (2): 251-258    DOI: 10.3785/j.issn.1008-973X.2021.02.005
    
A survey of supernumerary robotic limbs
De-bin LIU1(),Dan WANG1,2,*(),Bai CHEN1,Yao-yao WANG1,2,Li-yao SONG1
1. National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1218KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Firstly, the research background and the significance of supernumerary robotic limbs (SRLs) were introduced. Secondly, the concept of SRLs was provided, and SRLs were divided into two parts, i.e., auxiliary operation SRLs and auxiliary support SRLs, according to their functions. Thirdly, the current research status and progress for different structure types and structural flexibility SRLs were outlined. Besides, the main research points about man-machine integration for the SRLs were analyzed in terms of lightweight design and security, robotic-human-environment interaction and cooperation and anti-interference capability. Finally, the prospect of the SRLs was summarized.



Key wordssupernumerary robotic limbs      robotic-human-environment interaction and cooperation      auxiliary operation      auxiliary support     
Received: 11 May 2020      Published: 09 March 2021
CLC:  TH 39  
Fund:  国家自然科学基金资助项目(51705243);流体动力与机电系统国家重点实验室开放基金资助项目(GZKF-201917);江苏省自然科学基金资助项目(BK20170789);南京航空航天大学基本科研业务费-青年科技创新基金资助项目(NT2020010)
Corresponding Authors: Dan WANG     E-mail: nuaaldb@nuaa.edu.cn;wangdan_053@nuaa.edu.cn
Cite this article:

De-bin LIU,Dan WANG,Bai CHEN,Yao-yao WANG,Li-yao SONG. A survey of supernumerary robotic limbs. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 251-258.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.02.005     OR     http://www.zjujournals.com/eng/Y2021/V55/I2/251


外肢体机器人研究综述

阐述外肢体机器人(SRLs)的研究背景和研究意义. 介绍外肢体机器人的概念,将外肢体机器人按照功能分为辅助操作外肢体与辅助支撑外肢体. 针对不同结构类型与结构柔性的2类外肢体机器人总结研究现状. 就外肢体机器人人机一体化特性带来的结构轻量化、安全性、人机协作、抗干扰能力四方面对外肢体机器人的研究要点进行分析. 对外肢体机器人未来的发展趋势进行总结与展望.


关键词: 外肢体机器人,  人机协作,  辅助操作,  辅助支撑 
Fig.1 Schematic diagram of supernumerary robotic limbs for auxiliary operation
Fig.2 Schematic diagram of supernumerary robotic limbs for auxiliary support
Fig.3 Supernumerary robotic limbs for overhead space operation
Fig.4 Supernumerary robotic limbs for drilling operation in cabin
Fig.5 Supernumerary robotic limbs for interior wiring and assembly in cabin
Fig.6 Supernumerary robotic limbs for ceiling installation
Fig.7 Supernumerary robotic limbs named MetaLimbs
Fig.8 Supernumerary robotic limbs named Naviarm
Fig.9 3 DOF supernumerary robotic limbs based on hydraulic drive
Fig.10 Supernumerary robotic limbs mounted on elbow
Fig.11 Soft supernumerary robotic limbs named SPL
Fig.12 Soft supernumerary robotic limbs named fSPL
Fig.13 Inflatable flexible supernumerary robotic limbs
Fig.14 Snake shaped supernumerary robotic limbs named Orochi
Fig.15 Supernumerary robotic limbs for auxiliary support
Fig.16 Supernumerary robotic limbs controlled by electromyogram
Fig.17 Supernumerary robotic limbs named MantisBot
Fig.18 Supernumerary robotic limbs for daily life applications
[1]   2018年农民工监测调查报告[J]. 农村工作通讯, 2019(11): 40-43.
2018 migrant workers monitoring survey report [J]. Newsletter About Work in Rural Areas, 2019(11): 40-43.
[2]   刘亚威. 波音公司放弃使用机器人装配777X飞机机身[N]. 航空简报, 2020-01-17.
[3]   PENALOZA C I, NISHIO S BMI control of a third arm for multitasking[J]. Science Robotics, 2018, 3 (20): eaat1228
doi: 10.1126/scirobotics.aat1228
[4]   ABDI E, BURDET E, BOURI M, et al In a demanding task, three-handed manipulation is preferred to two-handed manipulation[J]. Scientific Reports, 2016, 6: 21758
doi: 10.1038/srep21758
[5]   GUTERSTAM A, PETKOVA V I, EHRSSON H H The illusion of owning a third arm[J]. Plos One, 2011, 6 (2): e17208
doi: 10.1371/journal.pone.0017208
[6]   DOUGHERTY Z, WINCK R C. Evaluating the performance of foot control of a supernumerary robotic limb [C]// Dynamic Systems and Control Conference. Park City: ASME, 2019: V003T16A003.
[7]   DOUGHTERY Z J. Foot-controlled supernumerary robotic arm: control methods and human abilities [D]. Terre Haute: Rose-Hulman Institute of Technology, 2018.
[8]   BASHFORD L, MEHRING C Ownership and agency of an independent supernumerary hand induced by an imitation brain-computer interface[J]. Plos One, 2016, 11 (6): e0156591
doi: 10.1371/journal.pone.0156591
[9]   ABDI E, BURDET E, BOURI M, et al Control of a supernumerary robotic hand by foot: an experimental study in virtual reality[J]. Plos One, 2015, 10 (7): e0134501
doi: 10.1371/journal.pone.0134501
[10]   高越. 3D打印技术影响下设计师与产品设计的重新定位[D]. 北京: 北京理工大学, 2015.
GAO Yue. The repositioning of designer and product design under the influence of 3D printing technology [D]. Beijing: Beijing Institute of Technology, 2015.
[11]   徐蓓芬 协作机器人在车身车间的应用[J]. 汽车实用技术, 2020, (1): 181- 183
XU Bei-fen Application of collaborative robot in body workshop[J]. Automobile Applied Technology, 2020, (1): 181- 183
[12]   DAVENPORT C, PARIETTI F, ASADA H H. Design and biomechanical analysis of supernumerary robotic limbs [C]// ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference. Fort Lauderdale: ASME, 2012: 787-793.
[13]   LLORENS-BONILLA B, PARIETTI F, ASADA H H. Demonstration-based control of supernumerary robotic limbs [C]// 25th IEEE\RSJ International Conference on Intelligent Robots and Systems (IROS). Portugal: IEEE, 2012: 3936-3942.
[14]   杨辰光, 梁培栋, 陈君申, 等. 肩部可穿戴功能辅助机械臂: CN104825258A [P]. 2015-08-12.
[15]   朱延河, 赵传武, 张宗伟. 一种外肢体机器人模块单元及模块化可重构外肢体机器人: CN109514535A [P]. 2019-03-26.
[16]   黄剑, 霍军, 张梦诗, 等. 一种人体运动辅助两用式外肢体机器人: CN110292510A [P]. 2019-10-01.
[17]   丁志远, 蔡易林, 徐浩, 等. 可穿戴式三自由度人体辅助外机械臂: CN110561403A [P]. 2019-12-13.
[18]   陈恳, 郝鸣, 付成龙, 等. 外肢体负重行走辅助机器人: CN111113381A [P]. 2020-05-08.
[19]   XU C C, LIU Y Y, LI Z J. Biomechtronic design of a supernumerary robotic limbs for industrial assembly [C]// 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM). Toyonaka: IEEE, 2019: 553-558.
[20]   LLORENS-BONILLA B, ASADA H H. A robot on the shoulder: coordinated human-wearable robot control using coloured petri nets and partial least squares predictions [C]// IEEE International Conference on Robotics and Automation. Hong Kong: IEEE, 2014: 119-125.
[21]   PARIETTI F, ASADA H H. Supernumerary robotic limbs for aircraft fuselage assembly: body stabilization and guidance by bracing [C]// IEEE International Conference on Robotics and Automation. Hong Kong: IEEE, 2014: 1176-1183.
[22]   BRIGHT L. Supernumerary robotic limbs for human augmentation in overhead assembly tasks [C]// Robotics: Science and Systems. Cambridge: Massachusetts Institute of Technology, 2017: 91-95.
[23]   SEO W, SHIN C Y, CHOI J, et al. Applications of supernumerary robotic limbs to construction works: case studies [C]// Proceedings of the International Symposium on Automation and Robotics in Construction. Auburn: IAARC Publications, 2016, 33: 1, .
[24]   SHIN C Y. Position holding and force regulation control of supernumerary robotic limbs for ceiling work [D]. Seoul: Korea University, 2015.
[25]   SASAKI T, SARAIJI M Y, FERNANDO C L, et al. MetaLimbs: metamorphosis for multiple arms interaction using artificial limbs [C]// ACM Siggraph Posters. Los Angeles: ACM, 2017: a55.
[26]   MAEKAWA A, TAKAHASHI S, SARAIJI M Y, et al. Naviarm: augmenting the learning of motor skills using a backpack-type robotic arm system [C]// Proceedings of the 10th Augmented Human International Conference 2019. Reims: ACM, 2019: 1-8.
[27]   VERONNEAU C, DENIS J, LEBEL L P, et al Multifunctional remotely actuated 3-DOF supernumerary robotic arm based on magnetorheological clutches and hydrostatic transmission lines[J]. IEEE Robotics and Automation Letters, 2018, 5 (2): 2546- 2553
[28]   VATSAL V, HOFFMAN G. Design and analysis of a wearable robotic forearm [C]// 2018 IEEE International Conference on Robotics and Automation. Brisbane: IEEE, 2018: 5489-5496.
[29]   VATSAL V, HOFFMAN G. End-effector stabilization of a wearable robotic arm using time series modeling of human disturbances [C]// ASME 2019 Dynamic Systems and Control Conference. Park City: AMSE, 2019: V001T05A001.
[30]   VALE N M. User intent detection and control of a soft Poly-Limb [D]. Tempe: Arizona State University, 2018.
[31]   NGUYEN P H, SPARKS C, NUTHI S G, et al Soft Poly-Limbs: toward a new paradigm of mobile manipulation for daily living tasks[J]. Soft Robotics, 2018, 6 (1): 38- 53
[32]   NGUYEN P H, MOHD I I B, SPARKS C, et al. Fabric soft poly-limbs for physical assistance of daily living tasks [C]// 2019 International Conference on Robotics and Automation. Montreal: IEEE, 2019: 8429-8435.
[33]   LIANG X Q, CHEONG H, CHUI C K, et al A fabric-based wearable soft robotic limb[J]. Journal of Mechanisms and Robotics: Transactions of the ASME, 2019, 11 (3): 031003
doi: 10.1115/1.4043024
[34]   AL-SADA M, HOGLUND T, KHAMIS M, et al. Orochi: investigating requirements and expectations for multipurpose daily used supernumerary robotic limbs [C]// Proceedings of the 10th Augmented Human International Conference 2019. Reims: AH, 2019.
[35]   WU F Y, ASADA H H. Decoupled motion control of wearable robot for rejecting human induced disturbances [C]// 2018 IEEE International Conference on Robotics and Automation. Brisbane: IEEE, 2018: 4103-4110.
[36]   PARIETTI F, CHAN K C, HUNTER B, et al. Design and control of supernumerary robotic limbs for balance augmentation [C]// 2015 IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 5010-5017.
[37]   PARIETTI F, ASADA H H. Independent, voluntary control of extra robotic limbs [C]// 2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 5954-5961.
[38]   KUREK D A, ASADA H H. The MantisBot: design and impedance control of supernumerary robotic limbs for near-ground work [C]// 2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 5942-5947.
[1] Xu-dong GUAN,Jin ZHOU,Chao-wu JIN,Yuan-ping XU. Adaptive control performance of heavy load magnetic bearing and rotor[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 662-670.
[2] Hao TIAN,Yu-ren ZHAO. Optical measurement of high-speed solenoid valve switching-on characteristics[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 17-22.
[3] CHEN Hai sen, ZHANG De xin, WANG Ji he, SHAO Xiao wei, CHEN Guo zhong. Dual-drive synchronous control with large payload based on H∞ cross-coupled algorithm[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 131-137.
[4] HU Jian, WU Gong ping, WANG Wei, YANG Shou dong,LIU Ming, YANG Zhi yong, HE Yuan, GUO Lei. Speed control method of unpowered downhill for high voltage transmission line inspection robot[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1878-1884.
[5] ZHU Cheng-dang, TU Le, LIN Yong-gang, LIU Hong-wei, LI Wei. Hydro-mechanical hybrid power transmission technology in wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1767-1774.