A laser displacement sensor calibration method based on binocular visual technology was proposed, in order to increase the calibration precision of laser displacement sensor under the robot end-effector coordinate system. Through binocular visual technology, the location of laser spots projected on the flat was reconstructed. The eye-to-hand calibration parameters were used to transform the light spots into the robot end-effector coordinate system, meanwhile least squares method were used to match light spots into the line of the laser beam and obtain the beam direction as well as zero position of the laser displacement sensor to complete calibration. This method can simultaneously calibrate multiple laser displacement sensors on the robot end-effector coordinate system. No auxiliary component with precision requirement is needed in the calibration process, so the precision is high and the robustness is strong. Result based on standard ball measurement precision evaluation experiment shows that the laser displacement sensor measurement precision range after calibration by this method is 0.038 6±0.025 8 mm, within the range of three standard deviation, which satisfies the requirement of robot processing.
Hao-ran MA,Ya-bin DING. Calibration method of laser displacement sensor based on binocular vision. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1634-1642.
Fig.2Binocular vision system extracts spot locations model
Fig.3Calibration model of laser displacement sensor
Fig.4Coordinate transformation relation of calibration model
符号
定义
符号
定义
${O_{\rm{B}}}$
机器人基座坐标系
${O_{\rm{T}}}$
机器人末端坐标系
${x_{\rm{B}}}$
机器人基座坐标系x轴
${x_{\rm{T}}}$
机器人末端坐标系x轴
${y_{\rm{B}}}$
机器人基座坐标系y轴
${y_{\rm{T}}}$
机器人末端坐标系y轴
${z_{\rm{B}}}$
机器人基座坐标系z轴
${z_{\rm{T}}}$
机器人末端坐标系z轴
${O_{\rm{O}}}$
双目视觉系统坐标系
${O_{\rm{O}}}$
标定板坐标系
${x_{\rm{C}}}$
双目视觉系统坐标系x轴
${x_{\rm{O}}}$
标定板坐标系x轴
${y_{\rm{C}}}$
双目视觉系统坐标系y轴
${y_{\rm{O}}}$
标定板坐标系y轴
${z_{\rm{C}}}$
双目视觉系统坐标系z轴
${z_{\rm{O}}}$
标定板坐标系z轴
${}_{\rm{B}}^{\rm{T}}{\boldsymbol{H}}$
机器人末端相对于机器人基座的位姿转换矩阵
${}_{\rm{C}}^{\rm{O}}{\boldsymbol{H}}$
标定板相对于双目视觉系统的位姿转换关系
${}_{\rm{T}}^{\rm{O}}{\boldsymbol{H}}$
标定板相对于机器人末端的位姿转换矩阵
${}_{\rm{C}}^{\rm{B}}{\boldsymbol{H}}$
机器人基座相对于双目视觉的位姿转换矩阵
Tab.1Calibration model parameter definition
Fig.5Illustration zero position calculation
Fig.6Experimental platform of laser displacement sensor calibration
Fig.7Experimental procedure of laser displacement sensor calibration
Fig.8Eye-to-hand calibration experiment scene
Fig.9Binocular camera collect calibration image
Fig.10Image coordinate extraction process of spot center point
Fig.11The position of the spot of binocular vision acquisition in the robot terminal coordinate system
Fig.12Effect diagram of light spot fitting beam in robot terminal coordinate system
Fig.13Residual diagram of light spot fitting beam in robot terminal coordinate system
Fig.14Calculation results laser zero position in robot terminal coordinate system
Fig.15Measuring system collect spherical data points
Fig.16Spherical data point acquisition results in robot base coordinate system
Fig.17Spherical data point fitting results of ceramic standard sphere in robot base coordinate system
实验序号
${d_f}/{\rm{mm}}$
${d_e}/{\rm{mm}}$
${\varepsilon _{\max }}/{\rm{mm}}$
${\delta _{}}/{\rm{mm}}$
1
19.996
0.007
0.019
0.026
2
20.002
0.013
0.023
0.036
3
19.968
?0.021
0.027
0.048
4
20.004
0.015
0.020
0.035
5
19.998
0.009
0.018
0.027
6
19.978
?0.011
0.023
0.034
7
20.006
0.017
0.025
0.042
8
20.010
0.021
0.029
0.050
9
20.014
0.025
0.024
0.049
10
19.970
?0.019
0.020
0.039
Tab.2Spherical fitting results and measurement errors
Fig.18Normal measurement of workpiece surface
$u$
Kmax
Kmin
${K_{\rm{m}}}$
${K_{\rm{g}}}$
1
43.10
0
21.55
0
2
37.88
0
18.94
0
3
33.78
0
16.89
0
4
25.00
0
12.50
0
5
25.00
0
12.50
0
Tab.3Curvature at processing point m−1
Fig.19Measure angle distribution of residuals
[1]
ZHANG J, SUN J, LIU Z A flexible calibration method for laser displacement sensors based on a stereo-target[J]. Measurement science and Technology, 2014, 25 (10): 105103
doi: 10.1088/0957-0233/25/10/105103
[2]
孙彬, 李兵 一种量化的激光位移传感器倾角误差补偿模型[J]. 仪器仪表学报, 2015, 36 (5): 996- 1004 SUN Bin, LI Bing A quantitative error compensation model of the inclination angle of the laser displacement sensor[J]. Chinese Journal of Scientific Instrument, 2015, 36 (5): 996- 1004
doi: 10.3969/j.issn.0254-3087.2015.05.005
[3]
宁光芳, 甘泉 激光位移传感器误差补偿的仿真分析[J]. 激光杂志, 2016, 37 (4): 37- 40 NING Guang-fang, GAN Quan Simulation and analysis of error compensation of laser displacement sensor[J]. Laser Journal, 2016, 37 (4): 37- 40
[4]
董祉序, 孙兴伟, 刘伟军, 等 基于激光位移传感器的自由曲面精密测量方法[J]. 仪器仪表学报, 2018, 39 (12): 30- 38 DONG Zhi-xu, SUN Xing-wei, LIU Wei-jun, et al Precision measurement method of free-form curved surfaces based on laser displacement sensor[J]. Chinese Journal of Scientific Instrument, 2018, 39 (12): 30- 38
[5]
BROSED J F, AGUILAR J J, GUILLOMIA D, et al 3D geometrical inspection of complex geometry parts using a novel laser triangulation sensor and a robot[J]. Sensors, 2011, 11 (1): 90- 110
[6]
YANG T, WANG Z, WU Z, et al. Calibration of laser beam direction for inner diameter measuring device [J]. Sensors, 2017, 17(2): 294.
[7]
GAO Y H, WU D, NAN C G, et al Normal direction measurement in robotic drilling and precision calculation[J]. International Journal of Advanced Manufacturing Technology, 2015, 76: 1311- 1318
doi: 10.1007/s00170-014-6320-7
[8]
WANG Z, BAI J, ZHANG X Y, et al Base detection research of drilling robot system by using visual inspection[J]. Journal of Robotics, 2018, 2018: 8767531
[9]
LONG Y, ZHANG Y L, BI Q Z, et al Research on surface normal measurement and adjustment in aircraft assembly[J]. Precision Engineering, 2017, 50: 482- 493
doi: 10.1016/j.precisioneng.2017.07.004
[10]
刘勇, 毕超, 刘京亮, 等 光学测头光束方向多种标定方法的研究与比较[J]. 测控技术, 2014, 33: 552- 554 LIU Yong, BI Chao, LIU Jing-liang, et al Study and compare of several methods of beam-direction of optical sensor[J]. Measurement and Control Technology, 2014, 33: 552- 554
[11]
曹双倩, 袁培江, 陈冬冬, 等 激光测距传感器光束矢向和零点位置标定方法[J]. 北京航空航天大学学报, 2018, 44 (6): 1321- 1327 CAO Shuang-qian, YUAN Pei-jiang, CHEN Dong-dong, et al Calibration method for laser beam direction and zero point of laser displacement sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44 (6): 1321- 1327
[12]
毕超, 房建国, 刘京亮, 等 基于球形目标的激光位移传感器光束方向标定[J]. 光学精密工程, 2015, 23 (3): 678- 685 BI Chao, FANG Jian-guo, LIU Jing-liang, et al Calibration of beam direction of laser displacement sensor based on spherical target[J]. Optics and Precision Engineering, 2015, 23 (3): 678- 685
doi: 10.3788/OPE.20152303.0678
[13]
ZHOU A, GUO J, SHAO W, et al A segmental calibration method for a miniature serial-link coordinate measuring machine using a compound calibration artefact[J]. Measurement Science and Technology, 2013, 24 (6): 065001
doi: 10.1088/0957-0233/24/6/065001
[14]
王胜华, 都东, 张文增, 等 机器人定点变位姿手−眼标定方法[J]. 清华大学学报: 自然科学版, 2007, 47 (2): 165- 168 WANG Sheng-hua, DU Dong, ZHANG Weng-zeng, et al Hand-eye calibration for the robot by measuring a fixed point from different poses[J]. Journal of Tsinghua University: Science and Technology, 2007, 47 (2): 165- 168
[15]
WANG Z, YANG T Y, WANG L, et al Calibration of laser beam direction based on monocular vision[J]. Journal of Measurement Science and Instrumentation, 2017, 8 (4): 354- 363
[16]
陈和, 杨志浩, 郭磐, 等 激光光斑中心高精度定位算法研究[J]. 北京理工大学学报, 2016, 36 (2): 181- 185 CHEN He, YANG Zhi-hao, GUO Pan, et al Research of the high precision laser spot center location algorithm[J]. Transaction of Beijing Institute of Technology, 2016, 36 (2): 181- 185
[17]
罗世民, 李茂西 双目视觉测量中三维坐标的求取方法研究[J]. 计算机工程与设计, 2006, 27 (19): 3622- 3624 LUO Shi-min, LI Mao-xi Research on how to get object's 3D coordinate on two CCD camera measure system[J]. Computer Engineering and Design, 2006, 27 (19): 3622- 3624
doi: 10.3969/j.issn.1000-7024.2006.19.037
[18]
CHANG W C Precise positioning of binocular eye-to-hand robotic manipulators[J]. Journal of Intelligent and Robot Systems, 2007, 49 (3): 219- 236
doi: 10.1007/s10846-007-9135-z
[19]
刘强, 杨道国, 郝卫东 UR10机器人的运动学分析与轨迹规划[J]. 机床与液压, 2019, 47 (17): 22- 28 LIU Qiang, YANG Dao-guo, HAO Wei-dong Kinematic analysis and trajectory planning of UR10 robot[J]. Machine Tool and Hydraulics, 2019, 47 (17): 22- 28
doi: 10.3969/j.issn.1001-3881.2019.17.005
[20]
GONG M, YUAN P, WANG T. A novel method of surface-normal measurement in robotic drilling for aircraft fuselage using three laser range sensors [C]// IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Kaohsiung: IEEE, 2012: 450-455.
[21]
闫航瑞, 熊志勇 表面倾斜对激光三角测量的影响及校正研究[J]. 光学仪器, 2014, 36 (1): 11- 14 YAN Hang-rui, XIONG Zhi-yong Study of the impact and correction of surface tilt upon laser triangulation[J]. Optical Instruments, 2014, 36 (1): 11- 14
doi: 10.3969/j.issn.1005-5630.2014.01.003
DONG Hui yue, ZHU Ling sheng, ZHANG Ming, LI Shao bo, LUO Shui jun. Orbital milling method of aircraft skins trimming[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2033-2039.