|
|
Kinematic calibration for robots based on relative accuracy |
Chen-tao MAO1( ),Zhang-wei CHEN1,*( ),Xiang ZHANG2,3,Hong-fei ZU4 |
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China 2. School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310000, China 3. Hangzhou Econ Technologies, Hangzhou 310011, China 4. School of Mechanical Engineering and Automation, Zhejiang Sci-tech University, Hangzhou 310000, China |
|
|
Abstract A kinematic calibration method for structure parameters based on the relative accuracy was proposed by using the robust minimax optimization theory in order to meet the requirements of high relative accuracy for industrial robots in the application fields of laser cutting, arc welding and so on. The relative orientation accuracy between two successive configurations was guaranteed by minimizing the worst relative positioning errors corresponding to the three target spheres, and a nonlinear optimization problem with constraints was established. Then the original problem was approximated by using a quadratic sequence programming method, and a primal-dual subgradient algorithm was introduced to search the local optimal solution quickly under inequality constraints. The structural parameter errors of the robot introduced in the process of manufacturing and assembly were identified. The compensation and verification were conducted. The experimental results showed that the relative positioning and orientation accuracies of the six-axis robot IRB2600 increased by 67.98% and 24.32%, and the seven-axis robot IRB14000 improved by 90.61% and 74.61%, respectively.
|
Received: 03 January 2020
Published: 05 July 2020
|
|
Corresponding Authors:
Zhang-wei CHEN
E-mail: mct@zju.edu.cn;chenzw@zju.edu.cn
|
基于相对精度指标的机器人运动学校准
针对工业机器人在激光切割、弧焊等应用领域对相对精度的指标要求,结合鲁棒的极小极大优化理论,提出基于相对精度指标的运动学结构参数校准方法. 通过最小化3个靶球对应的最差相对定位误差,保障前、后两位型间的相对定向精度,构建包含约束的非线性优化问题;使用二次序列规划方法对原问题进行近似,通过主二元子梯度算法在满足不等式约束的条件下快速搜索局部最优解,实现对由于部件制造和装配等环节引入机器人结构参数误差的辨识. 进行补偿并精度验证后的实验结果表明,六轴机器人IRB2600的相对定位及定向精度分别提升了67.98%和24.32%,七轴机器人IRB14000分别提升了90.61%和74.61%.
关键词:
运动学校准,
相对精度,
极小极大优化,
工业机器人
|
|
[1] |
张晓平. 六自由度关节型机器人参数标定方法与实验研究[D]. 武汉: 华中科技大学, 2013. ZHANG Xiao-ping. Research on 6R articulated robot calibration Methods and experiments [D]. Wuhan: Huazhong University of Science and Technology, 2013.
|
|
|
[2] |
LI C, WU Y, LOWE H, et al POE-based robot kinematic calibration using axis configuration space and the adjoint error model[J]. Transactions on Robotics, 2016, 32 (5): 1264- 1279
doi: 10.1109/TRO.2016.2593042
|
|
|
[3] |
王一, 刘常杰, 杨学友, 等 工业机器人视觉测量系统的在线校准技术[J]. 机器人, 2011, (03): 45- 48 WANG Yi, LIU Chang-jie, YANG Xue-you, et al Online calibration of visualmeasurement system based on industrial robot[J]. Robot, 2011, (03): 45- 48
|
|
|
[4] |
WU L, YANG X, CHEN K, et al A minimal POE-based model for robotic kinematic calibration with only position measurements[J]. Transactions on Automation Science and Engineering, 2015, 12 (2): 758- 763
doi: 10.1109/TASE.2014.2328652
|
|
|
[5] |
陈更明. 多切割平台三维钣金件激光切割虚拟制造系统研究与开发[D]. 南京: 东南大学, 2018. CHEN Geng-ming. Research and development of laser cutting virtual manufacturing system for 3D sheet metal of multi-cutting platform [D]. Nanjing: Southeast University, 2018.
|
|
|
[6] |
DOLGUI A, PASHKEVICH A Manipulator motion planning for high-speed robotic laser cutting[J]. International Journal of Production Research, 2009, 47 (20): 5691- 5715
doi: 10.1080/00207540802070967
|
|
|
[7] |
WANG Z, XU H, CHEN G, et al A distance error based industrial robot kinematic calibration method[J]. Industrial Robot: An International Journal, 2014, 41 (5): 439- 446
doi: 10.1108/IR-04-2014-0319
|
|
|
[8] |
杜亮, 张铁, 戴孝亮 激光跟踪仪测量距离误差的机器人运动学参数补偿[J]. 红外与激光工程, 2015, (08): 119- 125 DU Liang, ZHANG Tie, DAI Xiao-liang Robot kinematic parameters compensation by measuring distance error using laser tracker system[J]. Infrared and Laser Engineering, 2015, (08): 119- 125
|
|
|
[9] |
MAO C, LI S, CHEN Z, et al A novel algorithm for robust calibration of kinematic manipulators and its experimental validation[J]. IEEE Access, 2019, 7 (1): 90487- 90496
|
|
|
[10] |
XU W, DONGSHENG L, MINGMING W. Complete calibration of industrial robot with limited parameters and neural network [C]// IEEE International Symposium on Robotics and Intelligent Sensors. Tokyo: IEEE, 2016.
|
|
|
[11] |
MOTTA J, CARVALHO G, MCMASTER R Robot calibration using a 3D vision-based measurement system with a single camera[J]. Robotics and Computer-Integrated Manufacturing, 2001, 17 (6): 487- 497
doi: 10.1016/S0736-5845(01)00024-2
|
|
|
[12] |
DU G, ZHANG P Online serial manipulator calibration based on multisensory process via extended Kalman and particle filters[J]. Transactions on Industrial Electronics, 2014, 61 (12): 6852- 6859
doi: 10.1109/TIE.2014.2314051
|
|
|
[13] |
ZHANG X, SONG Y, YANG Y, et al Stereo vision based autonomous robot calibration[J]. Robotics and Autonomous Systems, 2017, 93: 43- 51
doi: 10.1016/j.robot.2017.04.001
|
|
|
[14] |
LYNCH K M, PARK F C. Modern robotics: mechanics, planning, and control [M]. London: Cambridge University Press, 2017.
|
|
|
[15] |
欧阳富, 刘彦华, 孙东民 关于重新建立空间机构自由度计算公式的探索[J]. 机械工程学报, 2003, 39 (1): 60- 64 OUYANG Fu, LIU Yan-hua, SUN Dong-min Exploration on re-establishing the calculation formula of degree of freedom for spatial mechanism[J]. Chinese Journal of Mechanical Engineering, 2003, 39 (1): 60- 64
doi: 10.3321/j.issn:0577-6686.2003.01.013
|
|
|
[16] |
COTTLE R, THAPA M. Linear and nonlinear optimization [M]. New York: Springer, 2017.
|
|
|
[17] |
WALTER F The BFGS method with exact line searches fails for non-convex objective functions[J]. Mathematical Programming, 2004, 99 (1): 49- 61
doi: 10.1007/s10107-003-0421-7
|
|
|
[18] |
FRANCISCO F, CHRISTIAN K, SIMONE S Soving quasi-variational inequalities via their KKT-conditions[J]. Mathematical Programming, 2014, 144 (1/2): 369- 412
|
|
|
[19] |
张铁, 戴孝亮, 杜亮 基于距离测量的机器人误差标定及参数选定[J]. 北京航空航天大学学报, 2014, (05): 10- 15 ZHANG Tie, DAI Xiao-liang, DU Liang Robot error calibration based on distance measurement with parameter selection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, (05): 10- 15
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|