Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (12): 2243-2252    DOI: 10.3785/j.issn.1008-973X.2018.12.001
Mechanical Engineering     
Vibration analysis and suppression in robotic hole chamfering process
DONG Hui-yue1, SUN Qiang1, GUO Ying-jie1, ZHAO An-an2, ZHU Wei-dong1
1. College of Mechanical Engineering, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China;
2. Xi'an Aircraft Industry Company Limited, Xi'an 710089, China
Download:   PDF(15761KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The vibration causes of robotic hole chamfering were analyzed and a backward machining method was proposed to suppress the vibration. First, the vibration causes were analyzed by building system dynamics model under chamfering cutting force and pressure foot. It is found that the obvious dynamic deformation of robot is produced by axial force and the forced vibration is formed by radial force and tangential force. Furthermore, a backward champing method was proposed to eliminate the effect of axial force on the robot, on the basis of which, the forced vibration was suppressed by choosing reasonable pressure of the pressure foot. Finally, large numbers of forward and backward hole chamfering contrast experiments were conducted; the results verify the reliability of backward machining. The experimental results show that the surface roughness obtained by backward champing is below Ra1.6 μm and the difference of bevel width between the maximum and minimum value is 0.05 mm.



Received: 12 October 2017      Published: 13 December 2018
CLC:  V262.4  
Cite this article:

DONG Hui-yue, SUN Qiang, GUO Ying-jie, ZHAO An-an, ZHU Wei-dong. Vibration analysis and suppression in robotic hole chamfering process. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2243-2252.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.12.001     OR     http://www.zjujournals.com/eng/Y2018/V52/I12/2243


机器人孔口倒角加工振动及抑制

在分析机器人倒角切削振动成因的基础上,提出机器人反向倒角切削振动抑制方法.首先通过构建机器人倒角切削力以及压脚压力作用下的系统动力学模型,对振动成因进行分析,发现在轴向力作用下机器人产生明显动态变形,在径向力与切向力作用下机器人则发生明显强迫振动;进而提出一种机器人反向倒角切削方法,以消除轴向力对机器人的作用,并通过压脚压力的合理选取抑制强迫振动的发生;最后通过机器人正反向倒角对比试验,验证了机器人反向倒角切削的可靠性.试验结果表明:机器人反向倒角切削表面粗糙度小于Ra1.6 μm,孔口宽度差最大为0.05 mm.

[1] TEUN V A, JAN W V I. MEP倒角刀在航空零件中的应用[J]. 工具技术, 2014(10):7-9 TEUN V A, JAN W V I. MEP chamfering tool used in aviation parts[J]. Tool Engineering, 2014(10):7-9
[2] HARTMANN J, MEEKER C, MINSHULL A, et al. Automated wing panel assembly for the A340-600[J]. SAE Transactions, 2000, 7(1):44-47.
[3] 毕树生, 梁杰, 战强, 等. 机器人技术在航空工业中的应用[J]. 航空制造技术, 2009(4):34-39 BI Shu-sheng, LIANG Jie, ZHAN Qiang, et al. Robot technology and aerospace manufacturing[J]. Robot Technique and Application, 2009(4):34-39
[4] ALTINTAS Y. Manufacturing automation:metal cutting mechanics, machine tool vibrations, and CNC design[M]. Cambridge:Cambridge University Press, 2000.
[5] KILIC Z M, ALTINTAS Y. Generalized mechanics and dynamics of metal cutting operations for unified simulations[J]. International Journal of Machine Tools and Manufacture, 2016, 104:1-13.
[6] YANG Y, ZHANG W H, MA Y C, et al. Chatter prediction for the peripheral milling of thin-walled workpieces with curved surfaces[J]. International Journal of Machine Tools and Manufacture, 2016, 109:36-48.
[7] CHEN Y, DONG F. Robot machining:recent development and future research issues[J]. International Journal of Advanced Manufacturing Technology, 2013, 66(9-12):1489-1497.
[8] PAN Z, ZHANG H, ZHU Z, et al. Chatter analysis of robotic machining process[J]. Journal of Materials Processing Technology, 2006, 173(3):301-309.
[9] MEJRI S, GAGNOL V, LE T P, et al. Dynamic characterization of machining robot and stability analysis[J]. International Journal of Advanced Manufacturing Technology, 2016, 82(1-4):351-359.
[10] OZER A, SEMERCIGIL S E, KUMAR R P, et al. Tool chatter in turning with a two-link robotic arm[J]. Journal of Sound and Vibration, 2013, 332(6):1405-1417.
[11] GUO Y, DONG H, WANG G, et al. Vibration analysis and suppression in robotic boring process[J]. International Journal of Machine Tools and Manufacture, 2016, 101:102-110.
[12] HAZEL B, RAFIEIAN F, LIU Z. Impact-cutting and regenerative chatter in robotic grinding[C]//ASME International Mechanical Engineering Congress and Exposition (IMECE). Denver:ASME. 2011:349-359.
[13] 于学全, 邵大鹏, 倪红军, 等. 孔口倒角工艺及刀具研究[J]. 铁道机车车辆, 2011, 31(增1):374-378 YU Xue-quan, SHAO Da-peng, NI Hong-jun, et al. Orifice chamfering technique and tools research[J]. Railway Locomotive and CAR, 2011, 31(Suppl.1):374-378
[14] KAYMAKCI M, KILIC Z M, ALTINTAS Y. Unified cutting force model for turning, boring, drilling and milling operations[J]. International Journal of Machine Tools and Manufacture, 2012, 5455(3):34-45.
[15] ANGELES, JORGE. On the nature of the cartesian stiffness matrix[J]. Ingeniería Mecánica Tecnología Y Desarrollo, 2010, 3(5):163-170.
[16] OLSSON T, ROBERTSSON A, JOHANSSON R. Flexible force control for accurate low-cost robot drilling[C]//IEEE International Conference on Robotics and Automation (ICRA). Rome:IEEE, 2007:4770-4775.
[17] THOMSON W T, DAHLEH M D. Theory of vibration with applications[M]. 5th ed. New Jersey:Prentice Hall, 1997.
[18] GUO Y, DONG H, KE Y. Stiffness-oriented posture optimization in robotic machining applications[J]. Robotics and Computer-Integrated Manufacturing, 2015, 35(C):69-76.
[19] 曲巍崴, 侯鹏辉, 杨根军, 等. 机器人加工系统刚度性能优化研究[J]. 航空学报, 2013, 34(12):2823-2832 QU Wei-wei, HOU Peng-hui, YANG Gen-jun, et al. Research on the stiffness performance for robot maching systems[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2823-2832
[20] BI S, LIANG J. Robotic drilling system for titanium structures[J]. International Journal of Advanced Manufacturing Technology, 2011, 54(5-8):767-774.

No related articles found!