Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (11): 2110-2119    DOI: 10.3785/j.issn.1008-973X.2018.11.009
Mechanical and Energy Engineering     
Closed loop calibration of industrial robot for solving constraint plane wandering
WANG Chen-xue, PING Xue-liang, XU Chao
Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
Download:   PDF(1210KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The fitting plane wanders from real constraint plane when an industrial robot is calibrated based on planar constraint, which influences the accuracy of closed loop calibration directly. A method was proposed as well as the corresponding error model. The planar coordinate system (PCS) was built to achieve the exact equation of constraint plane. A trigger probe was used to measure the constraint plane, and the position of each measurement point was described in PCS. A complete, minimal and continuous kinematic model was established to reduce the influence of redundant parameters. The stereo vision system was applied to locate the constraint plane and plan the theoretic position of measurement points to realize automatic measurement. The identification of all kinematic parameters were accomplished by the modified least squares. Results showed that based on the proposed calibration method and error model, the absolute positioning accuracy of the industrial robot was enhanced from 1.234 mm to 0.405 mm after the modification of kinematic parameters. The proposed method has the advantages of low cost, high accuracy and high efficiency, and can simplify the error model. It is applicable for the on-site calibration of industrial robot and provides a reference for robot manufacturer to achieve batch calibration and subsequent equipment maintenance.



Received: 12 September 2017      Published: 22 November 2018
CLC:  TP242  
Cite this article:

WANG Chen-xue, PING Xue-liang, XU Chao. Closed loop calibration of industrial robot for solving constraint plane wandering. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2110-2119.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.11.009     OR     http://www.zjujournals.com/eng/Y2018/V52/I11/2110


解决约束平面偏移问题的机械臂闭环标定

基于平面约束的工业机械臂闭环标定,拟合平面与实际约束平面之间存在一定偏差,直接影响标定精度.针对此问题提出消除偏差的方法及误差模型.建立平面坐标系,得到约束平面的准确方程,通过接触式测量头对约束平面进行测量,在平面坐标系中描述测量点的位置;建立最小完整连续运动学模型,从而减少冗余参数的影响;利用双目视觉定位约束平面并规划理论测量点位置,实现自动化测量;通过改进的最小二乘法对参数误差进行辨识.实验结果表明,修正运动学参数后,机械臂绝对位置精度由1.234 mm提高到0.405 mm.该方法成本低、精度高、效率高,且简化了误差模型,适用于工业机械臂的现场标定,为机械臂生产厂家实现批量化标定及后期设备维护提供了思路.

[1] 张永贵, 黄玉美, 高峰. 基于遗传算法的机器人运动学参数误差识别[J]. 农业机械学报, 2008, 39(9):153-157 ZHANG Yong-gui, HUANG Yu-mei, GAO Feng. Robotics kinematics parameters error identification based on geneticalgorithm[J]. Transactions of the Chinese Society of Agricultural Machinery, 2008, 39(9):153-157
[2] JUDD R P, KNASINSKI A B. A technique to calibrate industrial robots with experimental verification[J]. IEEE Transactions on Robotics and Automation, 1990, 6(1):20-30.
[3] 解则晓, 辛少辉, 李绪勇, 等. 基于单目视觉的机器人标定方法[J]. 机械工程学报, 2011, 47(5):35-39 XIE Ze-xiao, XING Shao-hui, LI Xu-yong, et al. Method of robot calibration based on monocular vision[J]. Journal of Mechanical Engineering, 2011, 47(5):35-39
[4] HOLLERBACH J M, WAMPLER C W. The calibration index and taxonomy for robot kinematic calibration methods[J]. The International Journal of Robotics Research, 1996, 15(6):573-591.
[5] STONE H, SANDERSON A. A prototype arm signature identification system[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Raleigh, IEEE, 1987:175-182.
[6] 叶声华, 王一, 任永杰, 等. 基于激光跟踪仪的机器人运动学参数标定方法[J]. 天津大学学报, 2007, 40(2):202-205 YE Sheng-hua, WANG Yi, REN Yong-jie, et al. A robot kinematic calibration method based on laser tracker[J]. Journal of Tianjin University, 2007, 40(2):202-205
[7] NEWMAN W S, BIRKHIMER C E, HORNING R J, et al. Calibration of a Motoman P8 robot based on laser tracking[C]//Proceedings of the IEEE International Conference on Robotics and Automation. San Francisco:IEEE, 2000, 4:3597-3602.
[8] 王琨, 骆敏舟, 曹毅, 等. 基于遗传算法的串联机械臂运动学参数标定[J]. 系统科学与数学, 2015(1):19-30 WANG Kun, LUO Min-zhou, CAO Yi, et al. Kinematic parameter calibration of a serial manipulator based on genetic algorithm[J]. Journal of Systems Science and Mathematical Sciences, 2015(1):19-30
[9] 刘洁, 平雪良, 齐飞, 等. 基于视觉跟踪的机器人测量方法与实现[J]. 应用光学, 2016, 37(5):686-692 LIU Jie, PING Xue-liang, QI Fei, et al. A robot measurement method based on vision tracking[J]. Journal of Applied Optics, 2016, 37(5):686-692
[10] 任永杰, 邾继贵, 杨学友, 等. 利用激光跟踪仪对机器人进行标定的方法[J]. 机械工程学报, 2007, 43(9):195-200 REN Yong-jie, ZHU Ji-gui, YANG Xue-you, et al. Method of robot calibration based on laser tracker[J]. Journal of Mechanical Engineering, 2007, 43(9):195-200
[11] 刘振宇, 陈英林, 曲道奎, 等. 机器人标定技术研究[J]. 机器人, 2002, 24(5):447-450 LIU Zhen-yu, CHEN Ying-lin, QU Dao-kui, et al. Research on robot calibration[J]. Robot, 2002, 24(5):447-450
[12] 南小海. 6R型工业机器人标定算法与实验研究[D]. 武汉:华中科技大学, 2008:33-37. NAN Xiao-hai. Research on 6R industrial robot calibration algorithm and experimental verification[D]. Wuhan:Huazhong University of Science and Technology, 2008:33-37.
[13] 时定兵. 基于点约束的机器人运动学参数标定技术研究[D]. 南京:南京理工大学, 2014:12-18. SHI Ding-bing. Research on robot kinematic parameters calibration based on point constraints[D]. Nanjing:Nanjing University of Science and Technology, 2014:12-18.
[14] ZHONG X L, LEWIS J M. A new method for autonomous robot calibration[C]//Proceedings of the IEEE International Conference on Robotics and Automation, 1995. Nagoya:IEEE, 1995:1790-1795.
[15] JOUBAIR A, BONEV I A. Non-kinematic calibration of a six-axis serial robot using planar constraints[J]. Precision Engineering, 2015, 40:325-333.
[16] 齐飞. 基于平面约束的工业机器人误差补偿技术研究[D]. 无锡:江南大学, 2016:37-53. QI Fei. Research on error compensation technology of industrial robot based on planar constraints[D]. Wuxi:Jiangnan University, 2016:37-53.
[17] IKITS M, HOLLERBACH J M. Kinematic calibration using a plane constraint[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Albuquerque:IEEE, 1997, 4:3191-3196.
[18] 董慧颖, 李文广. 一种基于平面精度的机器人标定方法及仿真[J]. 中国机械工程, 2011, 22(17):2039-2042 DONG Hui-ying, LI Wen-guang. Robot calibration simulation based on planar precision[J]. China Mechanical Engineering, 2011, 22(17):2039-2042
[19] 谭民, 徐德, 侯增广, 等. 先进机器人控制[M]. 北京:高等教育出版社, 2007:39-46.
[20] SCHRÖER K, ALBRIGHT S L, Grethlein M. Complete, minimal and model-continuous kinematic models for robot calibration[J]. Robotics and Computer-Integrated Manufacturing, 1997, 13(1):73-85.
[21] 卢钰庭. 基于视觉的机器人标定的研究[D]. 广州:华南理工大学, 2013. LU Yu-ying. Research on robot calibration based on vision[D]. Guangzhou:South China University of Technology, 2013.

[1] ZHAO Xiao-dong, LIU Zuo-jun, CHEN Ling-ling, YANG Peng. Approach of running gait recognition for lower limb amputees[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1980-1988.
[2] WANG Shuo-peng, YANG Peng, SUN Hao. Construction process optimization of fingerprint database for auditory localization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1973-1979.
[3] FU Xiao-yun, LEI Lei, YANG Gang, LI Bao-ren. Wing parameter configuration and steady motion analysis of water-jet hybrid glider[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1499-1508.
[4] LI Zhong-wen, WANG Bin-rui, CHEN Di-jian. Gait planning for quadruped robot with parallel spine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1267-1274.
[5] KE Xian-xin, ZHANG Wen-zhen, YANG Yang, WEN Lei. Multi-sensor positioning system for humanoid robot[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1247-1252.
[6] LI Ci-ci, TIAN Guo-hui, ZHANG Meng-yang, ZHANG Ying. Ontology-based humanoid cognition and reasoning of object attributes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1231-1238.
[7] CHEN Di-jian, XU Yi-zhan, WANG Bin-rui. On-line optimal gait generation for biped walking robot by using double generating functions method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1253-1259.
[8] WU Bing-long, QU Dao-kui, XU Fang. Industrial robot high precision peg-in-hole assembly based on hybrid force/position control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 379-386.
[9] PAN Li, BAO Guan-jun, XU Fang, ZHANG Li-bin. Dynamic compliant control of six DOF assembly robot[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 125-132.
[10] GU Yu, LI Beng, HAN Bei. Landmark detection and tracking based on layered particle filter[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 687-691.
[11] JIANG Rong-Xin, ZHANG Liang, TIAN Xiang, CHEN Yao-Wu. Optimal efficiency of multi-robot formation transform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 722-727.
[12] LIU Chu-Hui, TAO Bao-Guo, KE Yang-Lin. Study on offline programming of industrial robot for cutting process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(3): 426-431.
[13] LI Jiang, WANG Xuan-Yin, CHENG Jia. Adaptive slidingmode trajectorytracking control of hydraulic Stewart platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1124-1128.
[14] XI Hai-Yan, MAO Tong-Sheng, LI Dun-Kai, et al. Measurement and evaluation of for flat panel displays color motion artifacts[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1158-1162.
[15] CHENG Bang-Qing, TANG Xiao-Wei. Study of Harris scale invariant keypoint detector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(5): 855-859.