Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (3): 451-459    DOI: 10.3785/j.issn.1008-973X.2025.03.002
交通工程、土木工程     
基于内容引导注意力的车道线检测网络
刘登峰1,2(),郭文静1,3,陈世海1
1. 江南大学 人工智能与计算机学院,江苏 无锡 214122
2. 康养智能化技术教育部工程研究中心,江苏 无锡 214122
3. 西南财经大学天府学院 智能科技学院,四川 绵阳 621000
Content-guided attention-based lane detection network
Dengfeng LIU1,2(),Wenjing GUO1,3,Shihai CHEN1
1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
2. Engineering Research Center of Intelligent Technology for Healthcare, Ministry of Education, Wuxi 214122, China
3. Intelligent Science and Technology Institute, Tianfu College of SWUFE, Mianyang 621000, China
 全文: PDF(2188 KB)   HTML
摘要:

为了有效利用注意力机制以提高车道线检测的准确性,提出基于内容引导注意力的车道线检测网络(CGANet). 通过设计内容引导注意力机制(CGA),增强捕捉上下文信息的能力,强调编码在特征中更有用的信息,从而削弱无关信息的影响. 为了减轻尺度差异对模型性能的影响,提出均衡特征金字塔网络(BFPN),以实现多尺度特征的均衡融合. 引入ROI(Region of Interest)提取器,以解决无视觉线索问题. 在损失函数中添加交叉熵损失作为辅助分类损失,激励模型生成更加清晰的概率分布. 在多个车道线检测数据集上进行实验验证,结果表明,与跨层细化网络(CLRNet)算法相比,所提方法在CULane、Tusimple和CurveLanes数据集上的F1指标分别提升0.65、0.18和0.29个百分点.

关键词: 无人驾驶技术车道线检测注意力机制多尺度特征融合交叉熵损失    
Abstract:

A content-guided attention network (CGANet) was proposed to effectively utilize attention mechanisms and improve the accuracy of lane detection. To enhance the model’s ability to capture contextual information, a content-guided attention (CGA) mechanism was introduced into the model, emphasizing more useful information encoded in the features while reducing the influence of irrelevant information. To reduce the impact of scale differences on model performance, a balanced feature pyramid network (BFPN) was proposed to achieve the balanced fusion of multi-scale features. An ROI (Region of Interest) extractor was introduced to address the issue of missing visual cues. Additionally, the cross-entropy loss was added to the loss function as an auxiliary classification loss to encourage the model to generate clearer probability distributions. Experimental results on multiple lane detection datasets demonstrated that, compared with the cross-layer refinement network (CLRNet) algorithm, the proposed method improves F1 index by 0.65, 0.18 and 0.29 percentage points on CULane, Tusimple and CurveLanes datasets, respectively.

Key words: autonomous driving technology    lane detection    attention mechanism    multi-scale feature fusion    cross-entropy loss
收稿日期: 2024-01-10 出版日期: 2025-03-10
CLC:  TP 391  
基金资助: 国家重点研发专项计划资助项目(2022YFE0112400);国家自然科学基金青年项目(21706096);第62批中国博士后科学基金面上资助项目(2017M621627);江苏省博士后科研资助项目(1601009A);江苏省自然科学基金青年项目(BK20160162).
作者简介: 刘登峰(1980—),女,副教授,从事人工智能模式识别、智能计算系统、发酵过程建模研究. orcid.org/0000-0002-6193-6641. E-mail:liudf@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘登峰
郭文静
陈世海

引用本文:

刘登峰,郭文静,陈世海. 基于内容引导注意力的车道线检测网络[J]. 浙江大学学报(工学版), 2025, 59(3): 451-459.

Dengfeng LIU,Wenjing GUO,Shihai CHEN. Content-guided attention-based lane detection network. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 451-459.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.002        https://www.zjujournals.com/eng/CN/Y2025/V59/I3/451

图 1  CGANet的整体架构
图 2  内容引导注意力结构图
图 3  内容引导注意力块的结构图
图 4  均衡特征金字塔的结构图
数据集Ntra/103Nval/103Ntest/103道路类型分辨率
CULane88.99.734.7Urban&Highway1640×590
Tusimple3.30.42.8Highway1280×720
CurveLanes100.020.030.0Urban&Highway2650 ×1440
表 1  CULane、Tusimple、CurveLanes数据集的详细信息
方法基线网络F1/%mF1/%F1/%NcrossFPS/帧Flops/109
NormalCrowdDazzleShadowNo lineArrowCurveNingt
SCNN[8]VGG1671.6038.3490.6069.7058.5066.9043.4084.1064.4066.1019907.5328.4
UFLD[2]ResNet1868.4038.9485.9063.6057.0069.6040.6079.4065.2066.702037282.08.4
ResNet3472.3038.9687.7066.0058.4068.8040.2081.0057.9062.101473170.016.9
LaneATT[15]ResNet1874.5047.3590.7169.7161.8264.0347.1386.8264.7566.581020153.09.3
ResNet3474.0047.5791.1472.0362.4774.1547.3987.3864.7568.721330130.018.0
ResNet12274.4048.4890.7469.7465.4772.3148.4685.2968.7268.81126421.070.5
CondLaneNet[14]ResNet1875.1348.8491.8774.8766.7276.0150.3988.3772.4071.231364175.010.2
ResNet3476.6849.1192.3874.1467.1775.9349.8588.8972.8871.921387128.019.6
ResNet10177.0250.8392.4774.1466.9376.9152.1389.1672.2172.80120149.044.8
CLRerNet[3]ResNet1876.1252.1192.6075.9270.2377.3352.3488.5772.6873.251458119.013.2
ResNet3477.2752.4592.5375.9670.4578.9252.9889.2372.8173.561334104.024.5
ResNet10178.8052.6892.8076.1269.8478.9553.6589.6973.4573.37128950.041.2
CLRNet[7]ResNet1878.1451.9292.6975.0669.7075.3951.9689.2568.0973.221520119.012.9
ResNet3478.7451.1492.4975.3370.5775.9252.0189.5972.7773.021448103.022.6
ResNet10179.4851.5592.8575.7868.4978.3352.5088.7972.5773.51145646.040.5
CGANet
(本研究方法)
ResNet1879.5852.6292.8976.0369.5376.6049.7388.5772.3773.131321120.013.7
ResNet3479.7352.3192.8775.8670.5776.8850.0389.7973.2373.741216112.030.6
ResNet10180.1352.8892.5476.7868.4979.5150.5887.6273.6873.36126257.042.7
表 2  CGANet在CULane上的实验结果
图 5  CULane数据集9种场景检测效果图
方法基线网络F1/%Acc/%PFP/%PFN/%
SCNN[8]VGG1694.9793.127.172.20
UFLD[2]ResNet1885.8793.8220.058.92
ResNet3486.0292.8619.918.75
LaneATT[15]ResNet1895.7192.104.568.01
ResNet3495.7792.634.537.92
ResNet12295.5992.576.647.17
CondLaneNet[13]ResNet1896.0193.483.187.28
ResNet3495.9893.373.208.80
ResNet10196.2494.543.018.82
CLRNet[7]ResNet1895.0493.973.097.02
ResNet3494.7393.112.877.92
ResNet10197.2796.331.863.63
CGANet
(本研究方法)
ResNet1896.7395.241.844.80
ResNet3496.0293.781.976.14
ResNet10197.4596.672.762.31
表 3  CGANet在Tusimple上的实验结果
图 6  Tusimple数据集车道线检测效果图
方法基线网络F1/%P/%R/%FLOPs/109
CLRNet[7]ResNet1885.0987.7582.5810.3
ResNet3485.9288.2983.6819.7
ResNet10186.1088.9883.4144.9
CGANet
(本研究方法)
ResNet1885.9891.0581.1218.4
ResNet3486.1891.6281.5720.1
ResNet10186.3991.5281.6144.8
表 4  CGANet在CurveLanes上的实验结果
图 7  CurveLanes数据集车道线检测效果图
BaselineCGABFPNCeLossF1/%Acc/%PFP/%PFN/%
95.8394.732.685.49
95.5494.712.856.24
95.0694.073.026.93
96.1394.962.545.30
96.7295.241.844.80
表 5  CGANet消融实验
图 8  CGA权值在CULane数据集的可视化结果
1 ZHENG T, FANG H, ZHANG Y, et al. RESA: recurrent feature-shift aggregator for lane detection [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Palo Alto: AAAI Press, 2021: 3547−3554.
2 QIN Z, WANG H, LI X. Ultra fast structure-aware deep lane detection [C]// Computer Vision–ECCV 2020: 16th European Conference . Glasgow: Springer, 2020: 276−291.
3 HONDA H, UCHIDA Y. CLRerNet: improving confidence of lane detection with LaneIoU [C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision . Waikoloa: IEEE, 2024: 1165–1174.
4 HAN J, DENG X, CAI X, Laneformer: object-aware row-column transformers for lane detection [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Palo Alto: AAAI Press, 2022: 799−807.
5 LEE D H, LIU J L End-to-end deep learning of lane detection and path prediction for real-time autonomous driving[J]. Signal, Image and Video Processing, 2023, 17 (1): 199- 205
doi: 10.1007/s11760-022-02222-2
6 PAN H, CHANG X, SUN W Multitask knowledge distillation guides end-to-end lane detection[J]. IEEE Transactions on Industrial Informatics, 2023, 19 (9): 9703- 9712
doi: 10.1109/TII.2023.3233975
7 ZHENG T, HUANG Y, LIU Y, et al. CLRNet: cross layer refinement network for lane detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . New Orleans: IEEE, 2022: 888–897.
8 PAN X, SHI J, LUO P, et al. Spatial as deep: Spatial cnn for traffic scene understanding [C]// Proceedings of the AAAI Conference on Artificial Intelligence . New Orleans: AAAI Press, 2018: 589−592.
9 LEE M, LEE J, LEE D, et al. Robust lane detection via expanded self attention [C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision . Waikoloa: IEEE, 2022: 1949–1958.
10 XU H, WANG S, CAI X, et al. CurveLane-NAS: unifying lane-sensitive architecture search and adaptive point blending [C]// Computer Vision–ECCV 2020: 16th European Conference . Glasgow: Springer, 2020: 689−704.
11 TABELINI L, BERRIEL R, PAIXAO T M, et al. PolyLaneNet: lane estimation via deep polynomial regression [C]// Proceedings of the 25th International Conference on Pattern Recognition . Milan: IEEE, 2021: 6150–6156.
12 LIU R, YUAN Z, LIU T, et al. End-to-end lane shape prediction with transformers [C]// Proceedings of the IEEE Winter Conference on Applications of Computer Vision . Waikoloa: IEEE, 2021: 3694–3702.
13 LIU L, CHEN X, ZHU S, et al. CondLaneNet: a top-to-down lane detection framework based on conditional convolution [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Montreal: IEEE, 2021: 3753–3762.
14 LI X, LI J, HU X, et al Line-CNN: end-to-end traffic line detection with line proposal unit[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (1): 248- 258
doi: 10.1109/TITS.2019.2890870
15 TABELINI L, BERRIEL R, PAIXAO T M, et al. Keep your eyes on the lane: real-time attention-guided lane detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville: IEEE, 2021: 294–302.
16 WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision . Munich: Springer, 2018: 3-19.
17 LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 936–944.
18 LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 8759–8768.
19 LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops . Honolulu: IEEE, 2017: 1132–1140.
[1] 薛雅丽,贺怡铭,崔闪,欧阳权. 基于改进YOLOv5的SAR图像有向舰船目标检测算法[J]. 浙江大学学报(工学版), 2025, 59(2): 261-268.
[2] 杨冰,徐楚阳,姚金良,向学勤. 基于单目RGB图像的三维手部姿态估计方法[J]. 浙江大学学报(工学版), 2025, 59(1): 18-26.
[3] 刘欢,李云红,张蕾涛,郭越,苏雪平,朱耀麟,侯乐乐. 基于MA-ConvNext网络和分步关系知识蒸馏的苹果叶片病害识别[J]. 浙江大学学报(工学版), 2024, 58(9): 1757-1767.
[4] 李灿林,王新玥,马利庄,邵志文,张文娇. 融合注意力机制和结构线提取的图像卡通化[J]. 浙江大学学报(工学版), 2024, 58(8): 1728-1737.
[5] 李忠良,陈麒,石琳,杨朝,邹先明. 时间感知组合的动态知识图谱补全[J]. 浙江大学学报(工学版), 2024, 58(8): 1738-1747.
[6] 吴书晗,王丹,陈远方,贾子钰,张越棋,许萌. 融合注意力的滤波器组双视图图卷积运动想象脑电分类[J]. 浙江大学学报(工学版), 2024, 58(7): 1326-1335.
[7] 马现伟,范朝辉,聂为之,李东,朱逸群. 对失效传感器具备鲁棒性的故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1488-1497.
[8] 杨军,张琛. 基于边界点估计与稀疏卷积神经网络的三维点云语义分割[J]. 浙江大学学报(工学版), 2024, 58(6): 1121-1132.
[9] 李运堂,李恒杰,张坤,王斌锐,关山越,陈源. 基于新型编码解码网络的复杂输电线识别[J]. 浙江大学学报(工学版), 2024, 58(6): 1133-1141.
[10] 魏翠婷,赵唯坚,孙博超,刘芸怡. 基于改进Mask R-CNN与双目视觉的智能配筋检测[J]. 浙江大学学报(工学版), 2024, 58(5): 1009-1019.
[11] 刘毅,陈一丹,高琳,洪姣. 基于多尺度特征融合的轻量化道路提取模型[J]. 浙江大学学报(工学版), 2024, 58(5): 951-959.
[12] 邢志伟,朱书杰,李彪. 基于改进图卷积神经网络的航空行李特征感知[J]. 浙江大学学报(工学版), 2024, 58(5): 941-950.
[13] 宦海,盛宇,顾晨曦. 基于遥感图像道路提取的全局指导多特征融合网络[J]. 浙江大学学报(工学版), 2024, 58(4): 696-707.
[14] 曹寅,秦俊平,高彤,马千里,任家琪. 基于生成对抗网络的文本两阶段生成高质量图像方法[J]. 浙江大学学报(工学版), 2024, 58(4): 674-683.
[15] 宋明俊,严文,邓益昭,张俊然,涂海燕. 轻量化机器人抓取位姿实时检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 599-610.