交通工程、土木工程 |
|
|
|
|
基于内容引导注意力的车道线检测网络 |
刘登峰1,2( ),郭文静1,3,陈世海1 |
1. 江南大学 人工智能与计算机学院,江苏 无锡 214122 2. 康养智能化技术教育部工程研究中心,江苏 无锡 214122 3. 西南财经大学天府学院 智能科技学院,四川 绵阳 621000 |
|
Content-guided attention-based lane detection network |
Dengfeng LIU1,2( ),Wenjing GUO1,3,Shihai CHEN1 |
1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China 2. Engineering Research Center of Intelligent Technology for Healthcare, Ministry of Education, Wuxi 214122, China 3. Intelligent Science and Technology Institute, Tianfu College of SWUFE, Mianyang 621000, China |
1 |
ZHENG T, FANG H, ZHANG Y, et al. RESA: recurrent feature-shift aggregator for lane detection [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Palo Alto: AAAI Press, 2021: 3547−3554.
|
2 |
QIN Z, WANG H, LI X. Ultra fast structure-aware deep lane detection [C]// Computer Vision–ECCV 2020: 16th European Conference . Glasgow: Springer, 2020: 276−291.
|
3 |
HONDA H, UCHIDA Y. CLRerNet: improving confidence of lane detection with LaneIoU [C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision . Waikoloa: IEEE, 2024: 1165–1174.
|
4 |
HAN J, DENG X, CAI X, Laneformer: object-aware row-column transformers for lane detection [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Palo Alto: AAAI Press, 2022: 799−807.
|
5 |
LEE D H, LIU J L End-to-end deep learning of lane detection and path prediction for real-time autonomous driving[J]. Signal, Image and Video Processing, 2023, 17 (1): 199- 205
doi: 10.1007/s11760-022-02222-2
|
6 |
PAN H, CHANG X, SUN W Multitask knowledge distillation guides end-to-end lane detection[J]. IEEE Transactions on Industrial Informatics, 2023, 19 (9): 9703- 9712
doi: 10.1109/TII.2023.3233975
|
7 |
ZHENG T, HUANG Y, LIU Y, et al. CLRNet: cross layer refinement network for lane detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . New Orleans: IEEE, 2022: 888–897.
|
8 |
PAN X, SHI J, LUO P, et al. Spatial as deep: Spatial cnn for traffic scene understanding [C]// Proceedings of the AAAI Conference on Artificial Intelligence . New Orleans: AAAI Press, 2018: 589−592.
|
9 |
LEE M, LEE J, LEE D, et al. Robust lane detection via expanded self attention [C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision . Waikoloa: IEEE, 2022: 1949–1958.
|
10 |
XU H, WANG S, CAI X, et al. CurveLane-NAS: unifying lane-sensitive architecture search and adaptive point blending [C]// Computer Vision–ECCV 2020: 16th European Conference . Glasgow: Springer, 2020: 689−704.
|
11 |
TABELINI L, BERRIEL R, PAIXAO T M, et al. PolyLaneNet: lane estimation via deep polynomial regression [C]// Proceedings of the 25th International Conference on Pattern Recognition . Milan: IEEE, 2021: 6150–6156.
|
12 |
LIU R, YUAN Z, LIU T, et al. End-to-end lane shape prediction with transformers [C]// Proceedings of the IEEE Winter Conference on Applications of Computer Vision . Waikoloa: IEEE, 2021: 3694–3702.
|
13 |
LIU L, CHEN X, ZHU S, et al. CondLaneNet: a top-to-down lane detection framework based on conditional convolution [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Montreal: IEEE, 2021: 3753–3762.
|
14 |
LI X, LI J, HU X, et al Line-CNN: end-to-end traffic line detection with line proposal unit[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (1): 248- 258
doi: 10.1109/TITS.2019.2890870
|
15 |
TABELINI L, BERRIEL R, PAIXAO T M, et al. Keep your eyes on the lane: real-time attention-guided lane detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville: IEEE, 2021: 294–302.
|
16 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision . Munich: Springer, 2018: 3-19.
|
17 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 936–944.
|
18 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 8759–8768.
|
19 |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops . Honolulu: IEEE, 2017: 1132–1140.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|