计算机技术 |
|
|
|
|
基于小样本人体运动行为识别的孪生网络算法 |
姚明辉1,2( ),王悦燕2,吴启亮1,牛燕1,王聪1 |
1. 天津工业大学 航空航天学院,天津 300384 2. 天津工业大学 人工智能学院,天津 300384 |
|
Siamese networks algorithm based on small human motion behavior recognition |
Minghui YAO1,2( ),Yueyan WANG2,Qiliang WU1,Yan NIU1,Cong WANG1 |
1. School of Aeronautics and Astronautics, Tiangong University, Tianjin 300384, China 2. School of Artificial Intelligence, Tiangong University, Tianjin 300384, China |
引用本文:
姚明辉,王悦燕,吴启亮,牛燕,王聪. 基于小样本人体运动行为识别的孪生网络算法[J]. 浙江大学学报(工学版), 2025, 59(3): 504-511.
Minghui YAO,Yueyan WANG,Qiliang WU,Yan NIU,Cong WANG. Siamese networks algorithm based on small human motion behavior recognition. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 504-511.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.008
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I3/504
|
1 |
AGGARWAL J K, RYOO M S Human activity analysis: a review[J]. ACM Computing Surveys, 2011, 43 (3): 16- 28
|
2 |
BEDDIAR D R , NINI B , SABOKROU M , et al. Vision-based human activity recognition: a survey[J]. Multimedia Tools and Applications , 2020, 79(41): 30509-30555.
|
3 |
LI Y, YANG G, SU Z, et al Human activity recognition based on multienvironment sensor data[J]. Information Fusion, 2023, 91: 47- 63
doi: 10.1016/j.inffus.2022.10.015
|
4 |
WANG W, LIU A X, SHAHZAD M, et al Device-free human activity recognition using commercial WiFi devices[J]. IEEE Journal on Selected Areas in Communications, 2017, 35 (5): 1118- 1131
doi: 10.1109/JSAC.2017.2679658
|
5 |
HALIM A, ABDELLATIF A, AWAD M I, et al Prediction of human gait activities using wearable sensors[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2021, 235 (6): 676- 687
|
6 |
ENGÜL G, OZCELIK E, MISRA S, et al Fusion of smartphone sensor data for classification of daily user activities[J]. Multimedia Tools and Applications, 2021, 80 (24): 33527- 33546
doi: 10.1007/s11042-021-11105-6
|
7 |
MASWADI K, GHANI N A, HAMID S, et al Human activity classification using Decision Tree and Naïve Bayes classifiers[J]. Multimedia Tools and Applications, 2021, 80 (14): 21709- 21726
doi: 10.1007/s11042-020-10447-x
|
8 |
WANG Z, CHEN Y Recognizing human concurrent activities using wearable sensors: a statistical modeling approach based on parallel HMM[J]. Sensor Review, 2017, 37 (3): 330- 337
doi: 10.1108/SR-01-2017-0003
|
9 |
TANG T, ZHENG L, WENG S, et al. Human activity recognition with smart watch based on H-SVM [M]// Frontier Computing: Theory, Technologies and Applications . Singapore: Springer, 2018: 179−186.
|
10 |
HUANG J, LIN S, WANG N, et al TSE-CNN: a two-stage end-to-end CNN for human activity recognition[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24 (1): 292- 299
|
11 |
NOORI F M, RIEGLER M, UDDIN M Z, et al Human activity recognition from multiple sensors data using multi-fusion representations and CNNs[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2020, 16 (2): 1- 19
|
12 |
KAYA Y, TOPUZ E K Human activity recognition from multiple sensors data using deep CNNs[J]. Multimedia Tools and Applications, 2024, 83 (4): 10815- 10838
|
13 |
KIM C, LEE W Human activity recognition by the image type encoding method of 3-axial sensor data[J]. Applied Sciences, 2023, 13 (8): 4961
doi: 10.3390/app13084961
|
14 |
LI H, SHRESTHA A, HEIDARI H, et al Bi-LSTM network for multimodal continuous human activity recognition and fall detection[J]. IEEE Sensors Journal, 2020, 20 (3): 1191- 1201
|
15 |
VARSHNEY N, BAKARIYA B, KUSHWAHA A K S, et al Human activity recognition by combining external features with accelerometer sensor data using deep learning network model[J]. Multimedia Tools and Applications, 2022, 81 (24): 34633- 34652
doi: 10.1007/s11042-021-11313-0
|
16 |
UZUNHISARCIKLI E, KAVUNCUOĞLU E, ÖZDEMIR A T Investigating classification performance of hybrid deep learning and machine learning architectures on activity recognition[J]. Computational Intelligence, 2022, 38 (4): 1402- 1449
doi: 10.1111/coin.12517
|
17 |
XING Y, ZHU J, LI Y, et al An improved spatial temporal graph convolutional network for robust skeleton-based action recognition[J]. Applied Intelligence, 2023, 53 (4): 4592- 4608
doi: 10.1007/s10489-022-03589-y
|
18 |
SHI L, XU H, JI W, et al Real-time human activity recognition system based on capsule and LoRa[J]. IEEE Sensors Journal, 2021, 21 (1): 667- 677
|
19 |
USMAN SARWAR M, REHMAN JAVED A, KULSOOM F, et al PARCIV: recognizing physical activities having complex interclass variations using semantic data of smartphone[J]. Software: Practice and Experience, 2021, 51 (3): 532- 549
doi: 10.1002/spe.2846
|
20 |
ARSHAD H, KHAN M A, SHARIF M, et al Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution[J]. International Journal of Machine Learning and Cybernetics, 2019, 10 (12): 3601- 3618
doi: 10.1007/s13042-019-00947-0
|
21 |
PANDEY A, ZEESHAN M, KUMAR S Csi-based joint location and activity monitoring for COVID-19 quarantine environments[J]. IEEE Sensors Journal, 2023, 23 (2): 969- 976
|
22 |
易子文, 孙中华, 冯金超, 等 用于行为识别的通道可分离卷积神经网络[J]. 信号处理, 2020, 36 (9): 1497- 1502 YI Ziwen, SUN Zhonghua, FENG Jinchao, et al Channel separable convolutional neural network for behavior recognition[J]. Signal Processing, 2020, 36 (9): 1497- 1502
|
23 |
ZHANG X, WANG Y, CHEN Y, et al. Short-term wind speed prediction based on GRU [C]// IEEE Sustainable Power and Energy Conference . Beijing: IEEE, 2019: 882-887.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|