Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (3): 496-503    DOI: 10.3785/j.issn.1008-973X.2025.03.007
交通工程、土木工程     
桐油糯米复合灰浆强度试验及微观机理分析
唐晓武1,2(),向青青1,2,费敏亮3,李柯毅1,2,孙国平4,俞悦5
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
2. 浙江省城市地下空间开发工程技术研究中心,浙江 杭州 310058
3. 浙江大学 岩土工程研究所,浙江 杭州 310058
4. 浙江省文物考古研究所,浙江 杭州 310014
5. 中国人民大学 公共管理学院,北京 100086
Strength test and microscopic mechanism analysis of tung oil sticky rice-lime composite mortar
Xiaowu TANG1,2(),Qingqing XIANG1,2,Minliang FEI3,Keyi LI1,2,Guoping SUN4,Yue YU5
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Engineering Research Center of Urban Underground Development of Zhejiang Province, Hangzhou 310058, China
3. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
4. Zhejiang Institute of Cultural Relics and Archaeology, Hangzhou 310014, China
5. School of Public Administration and Policy, Renmin University of China, Beijing 100086, China
 全文: PDF(3546 KB)   HTML
摘要:

为了土遗址的夯土修复,采用正交设计制作不同质量分数比(水∶桐油∶糯米浆∶石灰)的复合灰浆试样.经1 a遗址现场养护,以抗剪强度的2个力学指标(黏聚力、内摩擦角)评价桐油、糯米浆、石灰对粉土的加固效果,以获得最优质量分数比. 结果表明:当复合灰浆质量分数比为18∶5∶12∶10时,黏聚力最大;当质量分数比为9∶3∶5∶5时,内摩擦角最大. 对2组最优质量分数比的桐油糯米复合灰浆开展28 d内强度增长验证,利用扫描电子显微镜、傅里叶变换红外光谱、X射线衍射仪探究复合灰浆的协同改良机理. 2组复合灰浆在28 d龄期中,在黏聚力方面,最优质量分数比试样的黏聚力达到了正交试验最高组合1a龄期的98.6%;在内摩擦角方面,最优质量分数比试样的内摩擦角达到了正交试验最高组合1a龄期的97.8%. 结果被应用于发生剥离病害的遗址土体,获得了良好的加固效果,能为潮湿环境土遗址现场修复和保护提供参考.

关键词: 复合灰浆抗剪强度正交试验改良机理微观机制分析    
Abstract:

Orthogonal design was used to make composite mortar samples with different mass fraction ratios (moisture : tung oil : sticky rice : lime) for the tamping repair of earthen ruins. After one full year of on-site maintenance of the site, the reinforcement effects of tung oil, sticky rice pulp and lime on silt were evaluated by two mechanical indexes of shear strength, i. e. cohesion and internal friction angle, to obtain the optimal mass fraction ratios. Results showed that when the mass fraction ratio was 18 : 5 : 12 : 10, the cohesion was the largest. When the mass fraction ratio was 9 : 3 : 5 : 5, the internal friction angle was the largest. The intensity growth of the two groups of tung oil sticky rice-lime composite mortar was verified within 28 days, and the synergistic improvement mechanism of composite mortar was explored by scanning electron microscope, Fourier transform infrared spectroscopy and X-ray diffractometer. At the 28-day curing age, in terms of cohesion, the cohesion of the optimal mass fraction ratio specimen achieved 98.6% of the cohesion of the highest combination in the orthogonal experiment at the 1-year curing age; in terms of internal friction angle, the internal friction angle of the optimal mass fraction ratio specimen achieved 97.8% of the internal friction angle of the highest combination in the orthogonal experiment at the 1-year curing age. The results were applied locally to the soil of the site with stripping disease, and the results showed that the long-term restoration effect was good, and could provide some reference for the on-site restoration and protection of the soil site in the humid environment.

Key words: composite mortar    shear strength    orthogonal test    improved mechanism    microscopic mechanism
收稿日期: 2024-01-06 出版日期: 2025-03-10
CLC:  TU 46  
基金资助: 浙江省文物保护科技资助项目(2023006).
作者简介: 唐晓武(1966—),男,教授,博导,从事土工合成材料、软土地基处理以及土遗址保护研究. orcid.org/0000-0002-0916-8761. E-mail:tangxiaowu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
唐晓武
向青青
费敏亮
李柯毅
孙国平
俞悦

引用本文:

唐晓武,向青青,费敏亮,李柯毅,孙国平,俞悦. 桐油糯米复合灰浆强度试验及微观机理分析[J]. 浙江大学学报(工学版), 2025, 59(3): 496-503.

Xiaowu TANG,Qingqing XIANG,Minliang FEI,Keyi LI,Guoping SUN,Yue YU. Strength test and microscopic mechanism analysis of tung oil sticky rice-lime composite mortar. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 496-503.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.007        https://www.zjujournals.com/eng/CN/Y2025/V59/I3/496

图 1  复合灰浆原材料
参数数值参数数值
GS2.7wP/%24.2
wo/%20.48c/kPa14.1
ρ/(g·cm?31.59φ/(°)26.4
wL/%33.3
表 1  试验用杭州粉土基本土性参数[15]
外观Drsv/
(mg·g?1
$\eta $/
(mPa·s)
TKA/%
透明液体0.9350~
0.9395
190~199200~350≥80
表 2  生桐油的性能指标[16]
外观分子式相对分子质量粒径/μm酸碱性
白色粉末Ca(OH)274.091~2强碱
表 3  熟石灰的基本性能参数
图 2  遗址现场养护照片及养护环境参数
水平因素
wW/%wT/%wR/%wL/%
112122
214244
316366
418488
52051010
62261212
72471414
表 4  试验因素与水平表
图 3  各因素的不同水平下的质量分数
水平Kc)/kPa$\bar{k} $c)/kPa
wWwTwRwLwWwTwRwL
1388.85168.63309.61305.8355.5524.0944.2343.69
2351.61210.49321.72324.150.2330.0745.9646.30
3474.18267.05327.25329.3567.7438.1546.7547.05
4534.59388.71342.44380.4576.3755.5348.9254.35
5313.88526.4383.6405.3744.8475.2054.8057.91
6203.07433.58389.55371.6329.0161.9455.6553.09
7193.48464.87385.49342.9327.6466.4155.0748.99
表 5  黏聚力极差分析结果
水平K$(\varphi)/\text{ (°)} $$\bar{k}(\varphi)/\text{ (°)} $
wWwTwRwLwWwTwRwL
1133.6395.76111.37115.6419.0913.6815.9116.52
2130.55104.02111.51112.9118.6514.8615.9316.13
3132.72110.81121.45119.3518.9615.8317.3517.05
4151.27111.65125.16118.6521.6115.9517.8816.95
5126.35144.34131.39130.6218.0520.6218.7718.66
693.17145.11128.1128.3113.3120.7318.318.33
786.73142.8125.51129.0112.3920.417.9318.43
表 6  内摩擦角极差分析结果
图 4  抗剪强度的效应曲线图
方差来源SE/(kPa)2f$ {\sigma }^{2} $/(kPa)2FP
wW14055.9562342.6614.21显著
wT16003.7562667.2916.18显著
wR991.856165.311.01
wL1077.496179.581.09
e3957.2824164.87
总计36086.3249
表 7  黏聚力方差分析结果
方差来源SE/(°)2f$ {\sigma }^{2} $/(°)2FP
wW467.09677.8520.17显著
wT387.51664.5816.74显著
wR52.9568.832.29
wL43.6267.271.89
e92.61243.86
总计17522.8949
表 8  内摩擦角方差分析结果
图 5  不同龄期桐油糯米复合灰浆的SEM图
图 6  桐油糯米复合灰浆矿物半定量分析
图 7  不同龄期桐油糯米复合灰浆的FTIR图谱
图 8  不同龄期桐油糯米复合灰浆抗剪强度
图 9  现场加固剥离土体
1 PAN C, CHEN K, CHEN D, et al Research progress on in-situ protection status and technology of earthen sites in moisty environment[J]. Construction and Building Materials, 2020, 253: 119219
doi: 10.1016/j.conbuildmat.2020.119219
2 唐晓武, 费敏亮, 俞悦, 等 雨季降水对浙江井头山深埋土遗址地下水位的影响[J]. 浙江大学学报: 工学版, 2022, 56 (3): 598- 606
TANG Xiaowu, FEI Minliang, YU Yue, et al Influence of rainy season precipitation on groundwater level of Jingtoushan deep-buried earthen site in Zhejiang Province[J]. Journal of Zhejiang University (Engineering Science), 2022, 56 (3): 598- 606
3 魏国锋, 张秉坚, 杨富巍, 等 钙基液态水硬性加固剂用于潮湿土遗址的加固保护[J]. 岩土力学, 2012, 33 (3): 702- 712
WEI Guofeng, ZHANG Bingjian, YANG Fuwei, et al Consolidation of historical earthen sites under moisture circumstance using calcium-based hydraulic consolidant[J]. Rock and Soil Mechanics, 2012, 33 (3): 702- 712
doi: 10.3969/j.issn.1000-7598.2012.03.009
4 STEMPKOWSKA A, MASTALSKA-POPŁAWSKA J, IZAK P, et al Stabilization of kaolin clay slurry with sodium silicate of different silicate moduli[J]. Applied Clay Science, 2017, 146: 147- 151
5 张克文. SH加固含有机质遗址土工程性质研究[D]. 兰州: 兰州大学, 2018.
ZHANG Kewen. Study of engineering properties in conversation of humus-containing soil of earthen sites with SH[D]. Lanzhou: Lanzhou University, 2018.
6 ZHANG C, ZHANG B, CUI B High hydrophobic preservation materials can cause damage to tabia relics[J]. Progress in Organic Coatings, 2020, 145: 105683
doi: 10.1016/j.porgcoat.2020.105683
7 魏国锋, 方世强, 李祖光, 等 桐油灰浆材料的物理性能与显微结构[J]. 建筑材料学报, 2013, 16 (3): 469- 474
WEI Guofeng, FANG Shiqiang, LI Zuguang, et al Physical properties and microscopic structure of Tung oil-lime putty[J]. Journal of Building Materials, 2013, 16 (3): 469- 474
doi: 10.3969/j.issn.1007-9629.2013.03.016
8 范岩. 土遗址保护材料的应用与效果研究: 评《土遗址保护材料探索: 非水分散体材料研制及土遗址加固研究》[EB/OL](2020-09-15)[2023-05-17]. https://kns.cnki.net/kcms2/article/abstract?v=CdHX_LbaUYwq2jOX1Iz0OzRRkdJGk4DSD6KyGlxee9sjOw499QMdRFIWiz-rjjRQwfQKM3_qpVtsmF0AqMeADRCYPJ9cDD6nCvJsJ1WgaruBMpSvULVwHidduOXNlEcHqxQO-UpCcGwkyfic0HJqhm0ZW2XTvFdD8h94895dWSFf2v7X5Ot6ui9u6iHZEIGj&uniplatform=NZKPT&language=CHS.
9 易识远, 魏国锋, 张秉坚, 等 中国传统三合土材料配方的试验研究[J]. 西北民族大学学报: 自然科学版, 2019, 40 (4): 31- 41
YI Shiyuan, WEI Guofeng, ZHANG Bingjian, et al Experimental study on the recipes of traditional Tabia of China[J]. Journal of Northwest University for Nationalities: Natural Science Edition, 2019, 40 (4): 31- 41
10 李佳佳. 中国传统复合灰浆的认识研究[D]. 杭州: 浙江大学, 2019.
LI Jiajia. Research and cognition of Chinese traditional composite mortars [D]. Hangzhou: Zhejiang University, 2019.
11 石庆红, 杨秀娟, 赵之, 等 工业废渣-过硫酸钠协同固化/稳定化石油污染土配比优选研究[J]. 中国环境科学, 2023, 43 (4): 1791- 1801
SHI Qinghong, YANG Xiujuan, ZHAO Zhi, et al Optimization ratio of industrial waste and sodium persulfate for synergy in solidification/stabilization of petroleum-contaminated soil[J]. China Environmental Science, 2023, 43 (4): 1791- 1801
12 唐晓武, 林廷松, 罗雪, 等 利用桐油和糯米汁改善黏土的强度及环境土工特性[J]. 岩土工程学报, 2007, 29 (9): 1324- 1329
TANG Xiaowu, LIN Tingsong, LUO Xue, et al Strength and geoenvironmental properties of clay improved by tung oil and sticky rice Juice[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (9): 1324- 1329
doi: 10.3321/j.issn:1000-4548.2007.09.008
13 张雅文. 有机物对氧化钙碳化过程及性能的影响[D]. 西安: 陕西科技大学, 2012.
ZHANG Yawen. Effect of organic matter on the carbonation process and the performance of calclum oxide [D]. Xi’an: Shaanxi University of Science and Technology, 2012.
14 杨富巍, 张秉坚, 曾余瑶, 等 传统糯米灰浆科学原理及其现代应用的探索性研究[J]. 故宫博物院院刊, 2008, 139 (5): 105- 114
YANG Fuwei, ZHANG Bingjian, ZENG Yuyao, et al Exploratory research on the scientific nature and application of traditional sticky rice mortar[J]. Palace Museum Journal, 2008, 139 (5): 105- 114
15 FEI M, TANG X W, YU Y, et al. Synergistic improvement earthen mortars with tung oil, sticky rice pulp, and aerial lime: application for the conservation of rammed earth structures damaged by exfoliation[J]. International Journal of Architectural Heritage , 2024, 18(10): 1519–1534.
16 中国林业出版社 . 中华人民共和国林业行业标: Y/T 2865——2017 [S]. 北京: 国家林业局, 2017.
17 MEIORIN C, ARANGUREN M I, MOSIEWICKI M A Vegetable oil/styrene thermoset copolymers with shape memory behavior and damping capacity[J]. Polymer International, 2012, 61 (5): 735- 742
doi: 10.1002/pi.3231
18 唐晓武, 王艳, 林廷松, 等 桐油和糯米汁改良土体防渗性和耐久性的研究[J]. 岩土工程学报, 2010, 32 (3): 351- 355
TANG Xiaowu, WANG Yan, LIN Tingsong, et al Permeability and durability of soils improved by tung oil and sticky rice juice[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (3): 351- 355
19 TESTER R F, KARKALAS J, QI X Starch: composition, fine structure and architecture[J]. Journal of Cereal Science, 2004, 39 (2): 151- 165
doi: 10.1016/j.jcs.2003.12.001
20 YU L, CHRISTIE G Microstructure and mechanical properties of orientated thermoplastic starches[J]. Journal of Materials Science, 2005, 40 (1): 111- 116
doi: 10.1007/s10853-005-5694-1
21 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123——2019 [S]. 北京: 中国计划出版社, 2019.
22 杨清清, 何鑫, 李琼芳, 等 不同固化方式对碳酸酐酶矿化菌固化砂土效果影响研究[J]. 工业建筑, 2018, 48 (7): 38- 43
YANG Qingqing, HE Xin, LI Qiongfang, et al Study of effects of different cementing methods for carbonic anhydrase mineralized bacteria on cementation of sand soil[J]. Industrial Construction, 2018, 48 (7): 38- 43
23 甘化民, 张一平 陕西五种土壤红外光谱特征的初步研究[J]. 土壤学报, 1992, 29 (2): 232- 236
GAN Huamin, ZHANG Yiping Preliminary study on the characteristics of infrared spectrum of five soils in Shaanxi[J]. Acta Pedologica Sinica, 1992, 29 (2): 232- 236
24 陈和生, 孙振亚, 邵景昌 八种不同来源二氧化硅的红外光谱特征研究[J]. 硅酸盐通报, 2011, 30 (4): 934- 937
CHEN Hesheng, SUN Zhenya, SHAO Jingchang Investigation on FT-IR spectroscopy for eight different sources of SiO2[J]. Bulletin of the Chinese Ceramic Society, 2011, 30 (4): 934- 937
25 范文军. 糯米浆-石灰复合材料固化遗址土吸水与失水特性研究[D]. 兰州: 兰州大学, 2021.
FAN Wenjun. Study on water absorption and water loss characteristics of soil consolidated by sticky rice-lime composites for earthen site[D]. Lanzhou: Lanzhou University, 2021.
26 陈晓东, 吴景贵, 李建明, 等 有机物料施用下原生盐碱土胡敏酸结构特征[J]. 土壤学报, 2020, 57 (3): 702- 709
CHEN Xiaodong, WU Jinggui, LI Jianming, et al Structural characteristics of humic acid in primary saline-alkali soil as affected by application of organic materials[J]. Acta Pedologica Sinica, 2020, 57 (3): 702- 709
doi: 10.11766/trxb201904030131
[1] 宋牧原,王宜将,杨微,郎丰飞,陈伟,刘雪莹. 干湿循环中磷石膏基防渗材料的防渗和剪切特性[J]. 浙江大学学报(工学版), 2024, 58(9): 1902-1911.
[2] 郭轩,徐忠根,赵亚涛,钟丹云. CFRP-木结构波纹钢填板螺栓节点力学性能正交试验研究[J]. 浙江大学学报(工学版), 2024, 58(4): 847-856.
[3] 王伟,黄帅帅,俞文杰,车旭明,李娜. 纤维和纳米材料改性水泥稳定道路固废的直剪力学行为[J]. 浙江大学学报(工学版), 2023, 57(9): 1727-1735.
[4] 王志建,龙顺忠,李颖宏. 基于正交试验的感应控制参数组合优化[J]. 浙江大学学报(工学版), 2023, 57(6): 1128-1136.
[5] 夏毅敏,郎宇杭,暨智勇,任勇. 适用于机器换刀的一体式刀座结构的承载性能[J]. 浙江大学学报(工学版), 2023, 57(2): 392-403.
[6] 孙浩,唐坤林,金爱兵,刘美辰,陈帅军,李木芽. 单一粗颗粒对矿岩颗粒体系剪切特性影响试验[J]. 浙江大学学报(工学版), 2022, 56(10): 2037-2048.
[7] 白永健,陈赟,张思,陈康,苏世杰. 熔融沉积成型3D打印拉丝缺陷的正交实验研究[J]. 浙江大学学报(工学版), 2022, 56(10): 2093-2103.
[8] 薛阳,吴益平,苗发盛,李麟玮. 基于随机场-贝叶斯的滑面抗剪强度参数反演[J]. 浙江大学学报(工学版), 2021, 55(6): 1118-1127.
[9] 丁绚晨,陈育民,张鑫磊. 微生物加固钙质砂环剪试验研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1690-1696.
[10] 罗军,邵旭东,曹君辉,樊伟,裴必达. 钢-超高性能混凝土组合板开裂荷载正交试验及计算方法[J]. 浙江大学学报(工学版), 2020, 54(5): 909-920.
[11] 徐辉, 缪建冬, 陈萍, 詹良通, 罗小勇. 药剂稳定化垃圾焚烧飞灰的工程特性测试研究[J]. 浙江大学学报(工学版), 2019, 53(1): 1-10.
[12] 傅晓云, 雷磊, 杨钢, 李宝仁. 喷水推进型水下滑翔机的水平翼参数配置及定常运动分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1499-1508.
[13] 臧俊超, 郑凌逶, 谢新宇, 曹丽文,李卓明. 生活源污染土电渗加固试验[J]. 浙江大学学报(工学版), 2017, 51(2): 245-254.
[14] 谢卢鑫,胡金冰,吴剑锋,王俊. 整秆式甘蔗收获机断尾机构虚拟试验研究[J]. 浙江大学学报(工学版), 2016, 50(9): 1662-1670.
[15] 裴晓朋,王国林,周海超,赵璠. 胎面结构设计参数对轮胎振动噪声的影响[J]. 浙江大学学报(工学版), 2016, 50(5): 871-878.