Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (9): 1902-1911    DOI: 10.3785/j.issn.1008-973X.2024.09.015
土木与建筑工程     
干湿循环中磷石膏基防渗材料的防渗和剪切特性
宋牧原1,2,3(),王宜将4,杨微1,2,3,*(),郎丰飞5,陈伟1,2,3,刘雪莹1,2,3
1. 湖南大学 建筑安全与节能教育部重点实验室,湖南 长沙 410082
2. 湖南大学 建筑安全与环境国际联合研究中心,湖南 长沙 410082
3. 湖南大学 土木工程学院,湖南 长沙 410082
4. 中蓝长化工程科技有限公司,湖南 长沙 410000
5. 湖北大峪口化工有限责任公司,湖北 钟祥 431911
Impermeability and shear strength of phosphogypsum-based impermeable materials under drying-wetting cycles
Muyuan SONG1,2,3(),Yijiang WANG4,Wei YANG1,2,3,*(),Fengfei LANG5,Wei CHEN1,2,3,Xueying LIU1,2,3
1. Key Laboratory of Building Safety and Energy Efficiency of Ministry of Education, Hunan University, Changsha 410082, China
2. National Center for International Research Collaboration in Building Safety and Environment, Hunan University, Changsha 410082, China
3. College of Civil Engineering, Hunan University, Changsha 410082, China
4. Chonfar Engineering and Technology Co. Ltd, Changsha 410000, China
5. Hubei Dayukou Chemical Co. Ltd, Zhongxiang 431911, China
 全文: PDF(1900 KB)   HTML
摘要:

研制新型聚丙烯酸钠改性膨润土-砂-磷石膏(PMB-S-PG)防渗材料,用于磷石膏渣场或路基防渗层,为多途径消纳磷石膏提出新思路. 对比PMB-S-PG、钠基膨润土-砂-磷石膏(RB-S-PG)与聚丙烯酸钠改性膨润土-砂(PMB-S)在干湿循环下的防渗及剪切特性,并结合扫描电子显微镜 (SEM)及压汞 (MIP)试验探明干湿(DW)循环下试样防渗和强度弱化的微观机理. 结果表明:试样RB-S-PG、PMB-S-PG及PMB-S的渗透系数在9次循环后分别上升了146.5倍、6.14倍及1.59倍,说明PMB有效提升了试样的抗干湿循环能力. 试样抗剪强度的大小关系为PMB-S-PG>RB-S-PG>PMB-S,表明PG和PMB有助于提升试样的抗剪强度. 试样的抗剪强度均随干湿循环次数的增加呈先降低后稳定的变化趋势. 通过MIP试验发现试样PMB-S-PG中孔隙随循环次数的增加由单峰演变为三峰结构,3个峰相应粒径的孔隙体积和数量不断增加,颗粒间胶结弱化,但试样中孔隙体积增量逐渐减小,可见在干湿循环作用下,试样的防渗及强度特性先弱化而后趋于稳定.

关键词: 磷石膏(PG)干湿(DW)循环渗透系数抗剪强度孔隙结构    
Abstract:

New sodium polyacrylate modified bentonite-sand-phosphogypsum (PMB-S-PG) impermeable material was developed for PG slag field or roadbed impermeable layers, which can provide a new idea for multiple ways to dispose PG. The properties of impermeability and shear strength for PMB-S-PG, raw bentonite-sand-phospho gypsum (RB-S-PG) and sodium polyacrylate modified bentonite-sand (PMB-S) under the drying-wetting (DW) cycles were compared, and the micro-mechanisms of the impermeability and the strength weakening for the specimens under the action of DW cycles were investigated by scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP) tests. Results showed that the coefficients of permeability for the RB-S-PG, PMB-S-PG and PMB-S specimens increased by 146.50, 6.14 and 1.59 times after 9 DW cycles, respectively, indicating that the PMB can effectively improve the resistance of the specimens for DW cycles. The relationship of the shear strength for three specimens was as follows: PMB-S-PG>RB-S-PG>PMB-S, indicating that the PG and the PMB both helped to improve the shear strength of the specimens. The shear strength of the specimens showed a change trend of decreasing first and then stabilizing with the increasing number of DW cycles. By the MIP tests, it was found that the pore structure of the PMB-S-PG specimen changed from single-peak to three-peaks structure with the increasing number of DW cycles. The pore volume and number corresponding to the particle size of the three peaks increased continuously, which led to the weakening of interparticle cementation, but the increment of the pore volume of the specimen decreased gradually. In the effect of DW cycles, the properties of impermeability and strength for the specimen first weakened and then tended to be stable.

Key words: phosphogypsum (PG)    drying-wetting (DW) cycles    coefficient of permeability    shear strength    pore structure
收稿日期: 2023-07-14 出版日期: 2024-08-30
CLC:  TU 411  
基金资助: 国家自然科学基金资助项目(52078207);国家自然科学基金青年科学基金资助项目(41807261);湖南省科技计划资助项目(2022RC1174).
通讯作者: 杨微     E-mail: songmy@hnu.edu.cn;yangwei86@hnu.edu.cn
作者简介: 宋牧原 (1999—),男,硕士生,从事固废资源化利用研究. orcid.org/0009-0005-2793-094X. E-mail:songmy@hnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
宋牧原
王宜将
杨微
郎丰飞
陈伟
刘雪莹

引用本文:

宋牧原,王宜将,杨微,郎丰飞,陈伟,刘雪莹. 干湿循环中磷石膏基防渗材料的防渗和剪切特性[J]. 浙江大学学报(工学版), 2024, 58(9): 1902-1911.

Muyuan SONG,Yijiang WANG,Wei YANG,Fengfei LANG,Wei CHEN,Xueying LIU. Impermeability and shear strength of phosphogypsum-based impermeable materials under drying-wetting cycles. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1902-1911.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.09.015        https://www.zjujournals.com/eng/CN/Y2024/V58/I9/1902

图 1  原状磷石膏和水洗磷石膏
参数pHw / %w0/ %w(Ca2SO4·2H2O) / %w (P2O5)/ %w (F?) / %w (As) / (mg·kg?1)w (Pb) / (mg·kg?1)w (Cd) / (mg·kg?1)IraIr
限值≤15 (Ⅰ)
≤20 (Ⅱ)
≥90 (Ⅰ)
≥80 (Ⅱ)
≤0.20 (Ⅰ)
≤0.30 (Ⅱ)
≤0.10 (Ⅰ)
≤0.20 (Ⅱ)
<30(Ⅰ)<85(Ⅰ)<100(Ⅰ)≤1≤1
水洗3.523.30.4296.330.090.053.8110.81.370.430.36
原状2.542.35.2593.130.370.234.3212.61.72
表 1  水洗和原状磷石膏的理化指标
指标wB/%指标wB/%
SiO262.839MgO3.224
Al2O316.337K2O1.331
Fe2O35.817TiO21.331
CaO5.399P2O50.255
Na2O3.614
表 2  膨润土的化学成分
材料 wP/%wL/%IPGsmF/(100 mL·(2g)?1)
聚合物改性膨润土105.06598.36493.302.3972.0 (去离子水)
膨润土132.35336.41201.062.6831.5 (去离子水)
表 3  膨润土与聚合物改性膨润土的物理性质指标
试样wBMDD/(g·cm?3)wopt/%
PMBRBSandPG
PMB-S-PG101040501.5024.7
RB-S-PG101040501.6122.3
PMB-S10109001.5220.3
表 4  不同试样的击实试验结果
图 2  试样及其组成材料的颗粒级配曲线
图 3  3种试样的电镜图片
图 4  不同循环次数下试样的渗透系数变化曲线
图 5  不同循环次数下试样的抗剪强度变化规律
图 6  不同循环次数下试样的黏聚力和内摩擦角变化曲线
图 7  不同循环次数下试样PMB-S-PG的累计注汞曲线
图 8  不同循环次数下试样PMB-S-PG的孔隙分布曲线
1 刘宁, 徐文龙 湿堆磷石膏渣场黏土防渗层效果分析[J]. 环境工程, 2011, 29 (2): 91- 95
LIU Ning, XU Wenlong Effectiveness of clay liner in seepage control for wet phosphogypsum stacks[J]. Environmental Engineering, 2011, 29 (2): 91- 95
2 崔荣政, 白海丹, 高永峰, 等 磷石膏综合利用现状及“十四五”发展趋势[J]. 无机盐工业, 2022, 54 (4): 1- 4
CUI Rongzheng, BAI Haidan, GAO Yongfeng, et al Current situation of comprehensive utilization of phosphogypsum and its development trend of 14th Five-Year Plan[J]. Inorganic Chemicals Industry, 2022, 54 (4): 1- 4
3 LI B X, LI L, CHEN X, et al Modification of phosphogypsum using circulating fluidized bed fly ash and carbide slag for use as cement retarder[J]. Construction and Buliding Materials, 2022, 338: 127630
doi: 10.1016/j.conbuildmat.2022.127630
4 CUADRI A A, MORENO S, ALTAMAR C L, et al Phosphogypsum as additive for foamed bitumen manufacturing used in asphalt paving[J]. Journal of Cleaner Production, 2021, 283: 124661
doi: 10.1016/j.jclepro.2020.124661
5 CHERNYSG Y, YAKHNEKO E, CHUBUR V, et al Phosphogypsum recycling: a review of environmental issues, current trends, and prospects[J]. Applied Sciences-Basel, 2021, 11 (4): 1575
doi: 10.3390/app11041575
6 CHEN M S, LIU P, KONG D W, et al Influencing factors of mechanical and thermal conductivity of foamed phosphogypsum-based composite cementitious materials[J]. Construction and Buliding Materials, 2022, 346: 128462
doi: 10.1016/j.conbuildmat.2022.128462
7 MARTIN D F, DOORIS P M, SUMPTER D Environmental impacts of phosphogypsum vs. borrow pits in roadfill construction[J]. Journal of Environmenal Science and Health Part A: Toxic/Hazardous Substances and Environmenal Engineering, 2001, 36 (10): 1975- 1982
8 ZHANG B L, CHEN K S, ZHANG K, et al Mechanical properties and modification mechanism of phosphogypsum stabilized soil[J]. SN Applied Sciences, 2022, 4 (8): 1- 19
9 JIN S X, ZHAO Z H, JIANG S F, et al. Comparison and summary of relevant standards for comprehensive utilization of fly ash at home and abroad [C]// IOP Conference Series: Earth and Environmental Science . Bristol: IOP, 2021: 012006.
10 LIU X D, JIN Z W, JING Y H, et al Review of the characteristics and graded utilisation of coal gasification slag[J]. Chinese Journal of Chemical Engineering, 2021, 35 (7): 92- 106
11 XU H Q, ZHU W, QIAN X D, et al Studies on hydraulic conductivity and compressibility of backfills for soil-bentonite cutoff walls[J]. Applied Clay Science, 2016, 132: 326- 335
12 DOLEY C, DAS U K, PHUKAN P K, et al A study on use of Brahmaputra river sand as a liner material for municipal landfills[J]. IOSR Journal of Mechanical and Civil Engineering, 2016, 13 (4): 91- 96
doi: 10.9790/1684-1304029193
13 ABDELLAH D, MOHAMED K G, IDRISS G Effect of water and leachate on hydraulic behavior of compacted bentonite, calcareous sand and tuff mixtures for use as landfill liners[J]. Geotechnical and Geological Engineering, 2017, 35 (6): 2677- 2696
doi: 10.1007/s10706-017-0270-4
14 OZHAN H O Determination of mechanical and hydraulic properties of polyacrylamide-added bentonite-sand mixtures[J]. Bulletin of Engineering Geology and The Environment, 2021, 80: 2557- 2571
doi: 10.1007/s10064-020-02062-9
15 周正兵, 王钊, 王俊奇. GCL: 一种新型复合土工材料的特性及应用综述[J]. 长江科学院院报, 2002, (1): 35-38.
ZHOU Zhengbing, WANG Zhao, WANG Junqi. An overview about preoperties and application if a new geocomposite : GCL [J]. Journal of Yangze River Scientific Rearch Institute , 2002, (1): 35-38.
16 林海, 章玲玲, 阮晓波, 等 水化针刺GCL+GM复合衬里的单剪破坏特征[J]. 岩土工程学报, 2016, 38 (9): 1660- 1667
LIN Hai, ZHANG Lingling, YUAN Xiaobo, et al Simple-shear failure characteristics of hydrated needle punched GCL+GM composite liner[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (9): 1660- 1667
doi: 10.11779/CJGE201609013
17 徐超, 李志斌 针刺GCL内部剪切强度的试验研究[J]. 同济大学学报: 自然科学版, 2010, 38 (5): 639- 643
XU Chao, LI Zhibin Experimental research on internal shear strength of needle-punched GCL[J]. Journal of TongJi Univerisity: Natural Science, 2010, 38 (5): 639- 643
18 ARIFIN Y F The Permeability and shear strength of compacted claystone-bentonite mixtures[J]. International Journal of Geomate, 2021, 21 (84): 48- 61
19 SOBIT J, SINGH S K Strength and compaction analysis of sand-bentonite-coal ash mixes[J]. IOP Conference Series: Materials Science and Engineering, 2017, 225 (1): 012091
20 IRAVANIAN A, BILSEL H Tensile strength properties of sand-bentonite mixtures enhanced with cement[J]. Procedia Engineering, 2016, 143: 111- 118
doi: 10.1016/j.proeng.2016.06.015
21 MORRIS P H, GRAHAM J, WILLIAMS D J Cracking in drying soils[J]. Canadian Geotechnical Journal, 1992, 29: 263- 277
doi: 10.1139/t92-030
22 SEIPHOORI, A, FERRARI A, LYESSE L, et al Water retention behaviour and microstructural evolution of MX-80 bentonite during wetting and drying cycles[J]. Geotechnique, 2014, 64 (9): 721- 734
doi: 10.1680/geot.14.P.017
23 MICHELA D C, GEMMINA D E , ADAM B, et al. Effect of wet-dry cycles on polymer treated bentonite in seawater: swelling ability, hydraulic conductivity and crack analysis [J]. Applied Clay Science , 2017, 142: 52−59.
24 MICHAEL A M, SEUNGCHOEL Y, JEFFREY C E Hydraulic conductivity of model soil-bentonite backfills subjected to wet-dry cycling[J]. Canadian Geotechnical Journal, 2011, 48 (8): 198- 211
25 TANG, C S, CHEN Q, LENG T, et al Effects of wetting-drying cycles and desiccation cracks on mechanical behavior of an unsaturated soil[J]. Catena, 2020, 194: 104721
doi: 10.1016/j.catena.2020.104721
26 TU Y, ZHANG R, ZHONG Z, et al The strength behavior and desiccation crack development of silty clay subjected to wetting-drying cycles[J]. Frontiers in Earth Science, 2022, 10: 852820
doi: 10.3389/feart.2022.852820
27 ZENG L, YU H, GAO Q, et al Evolution of tensile properties of compacted red clay under wet and dry cycles[J]. KSCE Journal of Civil Engineering, 2022, 26 (2): 606- 618
doi: 10.1007/s12205-021-0527-6
28 杨微, 任孟健, 陈仁朋, 等 复杂环境条件下改性膨润土的抗盐性能[J]. 浙江大学学报: 工学版, 2021, 55 (10): 1885- 1893
YANG Wei, REN Mengjian, CHEN Renpeng, et al Salt resistance of modified bentonite in complex environment[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (10): 1885- 1893
29 贵州省住房和城乡建设厅. 磷石膏建筑材料应用统一技术规范: DBJ52/T093—2019 [S]. 贵阳: [s. n.], 2019.
30 生态环境部国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准: GB1568—2018[S]. 北京: [s. n.], 2018.
31 中国磷复肥工业协会. 磷石膏无害化处理指南: T/CPFIA000X—2023 [S]. 北京: [s. n.], 2023.
32 中国工程建设协会标准. 高分子聚合矿物质防渗材料: T-CECS2010152—2021 [S]. 北京: 中国计划出版社, 2021.
33 熊峰, 杨宏伟, 吴益平, 等 干湿循环作用下滑带土孔隙结构与基质吸力响应规律研究[J]. 水利水运工程学报, 2018, (3): 95- 102
XIONG Feng, YANG Hongwei, WU Yiping, et al Response laws of pore structure and matrix suction of slip zone soils under action of wetting-drying cycles[J]. Hydro-Science and Engineering, 2018, (3): 95- 102
34 曾召田, 吕海波, 赵艳林, 等 膨胀土干湿循环过程孔径分布试验研究及其应用[J]. 岩土力学, 2013, 34 (2): 322- 328
ZENG Zhaotian, LU Haibo, ZHAO Yanlin, et al Study of pore size distribution of expansive soil during wetting-drying cycle and its application[J]. Rock and Soil Mechanics, 2013, 34 (2): 322- 328
35 吕海波, 汪稔, 赵艳林, 等 软土结构性破损的孔径分布试验研究[J]. 岩土力学, 2003, 24 (4): 573- 578
LU Haibo, WANG Ren, ZHAO Yanlin, et al Study of structure characteristics evolution of soft clay by pore size distribution test[J]. Rock and Soil Mechanics, 2003, 24 (4): 573- 578
doi: 10.3969/j.issn.1000-7598.2003.04.018
36 YANG W, ZHANG S Q, PAN X, et al Hydraulic properties of sodium polyacrylate-modified bentonite-sand mixtures[J]. Bulletin of Engineering Geology and the Environment, 2023, 82 (7): 250
doi: 10.1007/s10064-023-03255-8
[1] 王伟,黄帅帅,俞文杰,车旭明,李娜. 纤维和纳米材料改性水泥稳定道路固废的直剪力学行为[J]. 浙江大学学报(工学版), 2023, 57(9): 1727-1735.
[2] 倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究[J]. 浙江大学学报(工学版), 2022, 56(12): 2478-2486.
[3] 孙浩,唐坤林,金爱兵,刘美辰,陈帅军,李木芽. 单一粗颗粒对矿岩颗粒体系剪切特性影响试验[J]. 浙江大学学报(工学版), 2022, 56(10): 2037-2048.
[4] 魏纲,朱彦华,尹鑫晟,丁智,崔允亮. 基于改进滤失试验的泥水盾构动态泥膜渗透特性研究[J]. 浙江大学学报(工学版), 2022, 56(10): 2057-2065.
[5] 薛阳,吴益平,苗发盛,李麟玮. 基于随机场-贝叶斯的滑面抗剪强度参数反演[J]. 浙江大学学报(工学版), 2021, 55(6): 1118-1127.
[6] 康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性[J]. 浙江大学学报(工学版), 2021, 55(10): 1877-1884.
[7] 丁绚晨,陈育民,张鑫磊. 微生物加固钙质砂环剪试验研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1690-1696.
[8] 徐辉, 缪建冬, 陈萍, 詹良通, 罗小勇. 药剂稳定化垃圾焚烧飞灰的工程特性测试研究[J]. 浙江大学学报(工学版), 2019, 53(1): 1-10.
[9] 李智宁, 韩同春, 豆红强, 邱子义. 螺旋土钉钻进成孔扭矩分析[J]. 浙江大学学报(工学版), 2015, 49(8): 1426-1433.
[10] 王国庆, 程壮, 王振宇, 陈枫, 张毅. 带剪力键钢板-高强灌浆体的抗剪承载力[J]. 浙江大学学报(工学版), 2015, 49(7): 1282-1287.
[11] 张诚成, 朱鸿鹄, 唐朝生, 施斌. 纤维加筋土界面渐进性破坏模型[J]. 浙江大学学报(工学版), 2015, 49(10): 1952-1959.
[12] 詹良通, 徐辉, 兰吉武, 刘钊, 陈云敏. 填埋垃圾渗透特性室内外测试研究[J]. J4, 2014, 48(3): 478-486.
[13] 张振营,严立俊. 城市新鲜生活垃圾变形与强度的关联特性[J]. 浙江大学学报(工学版), 2014, 48(11): 1962-1967.
[14] 吴荣兵, 肖刚, 陈冬, 周慧龙, 倪明江, 高翔, 岑可法. 木质素高温炭化制备导电焦炭特性研究[J]. 浙江大学学报(工学版), 2014, 48(10): 1752-1757.
[15] 赵权利, 孙红月, 尚岳全, 王智磊. 承压水孔压的时空变化对边坡稳定性影响[J]. J4, 2013, 47(8): 1366-1372.