Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (10): 2057-2065    DOI: 10.3785/j.issn.1008-973X.2022.10.017
土木工程、交通工程、海洋工程     
基于改进滤失试验的泥水盾构动态泥膜渗透特性研究
魏纲1,2,3(),朱彦华4,尹鑫晟1,2,3(),丁智1,2,3,崔允亮1,2,3
1. 浙大城市学院 工程学院,浙江 杭州 310015
2. 浙江省城市盾构隧道安全建造与智能养护重点实验室,浙江 杭州 310015
3. 城市基础设施智能化浙江省工程研究中心,浙江 杭州 310015
4. 浙江大学 建筑工程学院,浙江 杭州 310058
Analysis of dynamic filter cake permeability characteristics of slurry shield based on modified fluid loss test
Gang WEI1,2,3(),Yan-hua ZHU4,Xin-sheng YIN1,2,3(),Zhi DING1,2,3,Yun-liang CUI1,2,3
1. College of Engineering, Zhejiang University City College, Hangzhou 310015, China
2. Key Laboratory of Safe Construction and Intelligent Maintenance for Urban Shield Tunnels of Zhejiang Province, Hangzhou 310015, China
3. Zhejiang Engineering Research Center of Intelligent Urban Infrastructure, Hangzhou 310015, China
4. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1915 KB)   HTML
摘要:

为了研究泥膜对泥水盾构开挖面稳定性的影响,通过改进滤失试验研究泥水盾构动态泥膜的渗透特性,提出泥水舱泥浆密度的计算方法,获得时间与泥浆滤失量的关系曲线和泥膜的本构参数(孔隙比-渗透系数-压力的相互关系),推导动态泥膜平均厚度的计算公式. 由试验压力增长引起的泥膜孔隙比的减小,可以降低泥膜的渗透系数. CMC-Na对泥浆的改性效果最好. 添加高分子材料的泥浆形成的泥膜厚度变小,泥膜厚度与泥膜平均渗透系数存在正比关系. 在盾构掘进过程中,泥膜厚度会发生周期性变化,动态泥膜的周期时间取决于刀具的布局和刀盘的转速. 动态泥膜的平均厚度约为最大泥膜厚度的2/3.

关键词: 泥水盾构泥浆性质泥膜滤失量渗透系数    
Abstract:

The modified fluid loss test was conducted to analyze the hydraulic conductivity of dynamic filter cake of slurry shield in order to analyze the influence of filter cake on the stability of the tunnel face of slurry shield. The calculation method of slurry density in slurry warehouse was proposed. The relationship curve between time and fluid loss, and the filter cake constitutive parameters (relationship between void rate, hydraulic conductivity and pressure) were obtained. The equation for average thickness of dynamic filter cake was derived. The decrease of filter cake pore ratio caused by the increase of test pressure can reduce the hydraulic conductivity. CMC-Na is the most effective in modifying slurry. The thickness of filter cake formed by adding polymer material is smaller, and there is a positive relationship between the thickness and the average hydraulic conductivity. The thickness of the filter cake will periodically change during shield excavation, and the cycle time of the dynamic filter cake depends on the tool layout and the rotational speed of the cutter. The average thickness of the dynamic filter cake is about 2/3 of the maximum filter cake thickness.

Key words: slurry shield    slurry property    filter cake    fluid loss    hydraulic conductivity
收稿日期: 2021-10-14 出版日期: 2022-10-25
CLC:  U 455  
基金资助: 国家自然科学基金资助项目(52178399,52278418);国家自然科学基金青年科学基金资助项目(51808493);浙江省教育厅科研计划资助项目(Y201839147);浙江省自然科学基金资助项目(LY21E080004);杭州市科技局规划资助项目(2020ZDSJ0639)
作者简介: 魏纲(1977—),男,教授,从事地下隧道的研究. orcid.org/0000-0001-5275-0880. E-mail: weig@zucc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
魏纲
朱彦华
尹鑫晟
丁智
崔允亮

引用本文:

魏纲,朱彦华,尹鑫晟,丁智,崔允亮. 基于改进滤失试验的泥水盾构动态泥膜渗透特性研究[J]. 浙江大学学报(工学版), 2022, 56(10): 2057-2065.

Gang WEI,Yan-hua ZHU,Xin-sheng YIN,Zhi DING,Yun-liang CUI. Analysis of dynamic filter cake permeability characteristics of slurry shield based on modified fluid loss test. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2057-2065.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.10.017        https://www.zjujournals.com/eng/CN/Y2022/V56/I10/2057

图 1  泥水盾构施工的示意图
图 2  滤失试验装置
参数 数值 参数 数值
wf/% 100 WP/% 72.6
wc/% 83.2 Ip 170.2
dr 2.55 S/(mL·(2g)?1) 12.0
WL/% 242.8 pH 7
表 1  膨润土的基本性质指标
泥浆型号 mb/g 材料 Mr/103 (mmmw?1)/% μs/s vm/s ρ/(g·cm?3) τy/Pa μ/(mPa·s) S/(mL·(2g)?1) d85/mm
SL1 50 0 16 30 1.03 0.15 1.50 12.0 0.033150
SL2 70 0 17 31 1.035 0.16 1.90 12.0 0.030580
SL3 50 APAM 25000 1 253 472 1.03 8.94 33.65 18.9 0.047820
SL4 50 CPAM 16000 1 19 38 1.03 0.10 5.80 15.9 0.135110
SL5 50 PAA-Na 1.2 1 19 34 1.03 0.51 3.40 16.6 0.069890
SL6 50 PAA-Na 15 1 22 40 1.03 1.28 6.05 18.3 0.066940
SL7 50 CMC 41 1 23 41 1.03 2.20 9.15 15.2 0.059670
SL8 50 CMC 57 1 264 291 1.03 32.04 63.35 17.3 0.050940
SL9 50 CMC-Na 8 1 31 51 1.03 2.96 19.40 15.3 0.063560
SL10 50 PAA-Na 1.2 2 20 36 1.03 0.87 5.95 17.3 0.044890
SL11 50 PAA-Na 15 2 23 38 1.03 3.12 6.45 19.1 0.087200
SL12 50 CMC 41 2 29 51 1.03 3.73 7.75 15.9 0.049960
SL13 50 CMC-Na 8 2 114 163 1.03 19.21 56.50 16.0 0.070220
SL14 50 QT 13.7 17 31 1.10 0.2 3.50 12.9 0.043574
SL15 50 QT 13.7 49 114 1.10 8.64 34.95 16.5 0.077433
SL15 50 CMC-Na 8 1 49 114 1.10 8.64 34.95 16.5 0.077433
表 2  泥浆的基本性质
图 3  颗粒级配累计曲线
图 4  滤失试验结果
图 5  ∆pt/V和V的关系
图 6  ∆pt/V2和∆p的关系
图 7  泥浆压力与泥膜平均孔隙比的关系
图 8  泥浆压力与泥膜平均渗透系数的关系
泥浆型号 α k0/(m·s?1) δ e0
SL1 0.845 3.41×10?7 0.0754 3.763 6
SL2 0.909 3.97×10?7 0.0980 4.202 4
SL3 0.674 4.35×10?10 0.3509 26.308 7
SL4 0.405 4.93×10?9 0.1529 7.490 3
SL5 0.517 2.86×10?9 0.2836 9.230 0
SL6 0.682 3.70×10?9 0.0714 6.064 6
SL7 0.739 3.08×10?10 0.1362 9.963 2
SL8 0.376 3.25×10?11 0.2705 16.908 3
SL9 0.349 9.18×10?12 0.1181 6.736 0
SL10 0.676 1.92×10?9 0.1954 10.418 4
SL11 0.925 7.95×10?10 0.0861 8.824 7
SL12 0.712 2.33×10?10 0.0838 12.075 4
SL13 0.152 3.30×10?12 0.1097 8.454 7
SL14 0.825 3.23×10?7 0.1739 0.828 7
SL15 0.193 2.52×10?12 0.1199 2.217 2
表 3  泥膜的孔隙比-渗透系数-压力的相互关系参数
图 9  ∆p =20 kPa下的泥膜平均渗透系数
图 10  泥膜平均渗透系数与膨胀指数的关系
图 11  刀盘切削土体的示意图
图 12  泥膜平均渗透系数与厚度的关系
图 13  ∆p = 20 kPa下泥膜厚度随时间的变化
1 刘成, 陆杨, 吕伟华, 等 砂性地层中盾构泥浆粗粒材料对成膜效果的影响[J]. 中国公路学报, 2018, 31 (9): 104- 111
LIU Cheng, LU Yang, LV Wei-hua, et al Effects of coarse-particle materials in slurry on filter-cake formation effectiveness in sandy strata[J]. China Journal of Highway and Transport, 2018, 31 (9): 104- 111
doi: 10.3969/j.issn.1001-7372.2018.09.012
2 尹鑫晟. 泥水盾构成膜规律及开挖面稳定性[D]. 杭州: 浙江大学, 2017: 27.
YIN Xin-sheng. Cake filtration and face stability of slurry shield tunnel [D]. Hangzhou: Zhejiang University, 2017: 27.
3 YIN X S, CHEN R P, MENG F Y, et al Face stability of slurry-driven shield with permeable filter cake[J]. Tunnelling and Underground Space Technology, 2021, 111 (1): 103841
4 吕乾乾, 孙振川, 杨振兴, 等 海水环境下盾构泥浆性能试验研究[J]. 隧道建设(中英文), 2019, 39 (2): 211- 218
LV Qian-qian, SUN Zhen-chuan, YANG Zhen-xing, et al Experimental study of shield slurry property under seawater environment[J]. Tunnel Construction, 2019, 39 (2): 211- 218
5 金大龙, 袁大军, 郑浩田, 等 高水压条件下泥水盾构开挖面稳定离心模型试验研究[J]. 岩土工程学报, 2019, 41 (9): 1653- 1660
JIN Da-long, YUAN Da-jun, ZHENG Hao-tian, et al Centrifugal model tests on face stability of slurry shield tunnels under high water pressures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (9): 1653- 1660
6 XU T, BEZUIJEN A Pressure infiltration characteristics of bentonite slurry[J]. Géotechnique, 2018, 69 (4): 364- 368
7 BROERE A. Tunnel face stability and new CPT applications [D]. Delft: Delft University of Technology, 2001.
8 ZHOU S H, ZHANG X H, WU D, et al Mathematical modeling of slurry infiltration and particle dispersion in saturated sand[J]. Transport in Porous Media, 2018, 124 (1): 91- 116
doi: 10.1007/s11242-018-1054-x
9 WATANABE T, YAMAZAKI H Giant size slurry shield is a success in Tokyo[J]. Tunnels and Tunnelling, 1981, 13 (12): 13- 17
10 MIN F L, DU J R, ZHANG N, et al Experimental study on property change of slurry and filter cake of slurry shield under seawater intrusion[J]. Tunnelling and Underground Space Technology, 2019, 88 (1): 290- 299
11 韩晓瑞, 朱伟, 刘泉维, 等 泥浆性质对泥水盾构开挖面泥膜形成质量影响[J]. 岩土力学, 2008, 29 (Supple.1): 288- 292
HAN Xiao-rui, ZHU Wei, LIU Quan-wei, et al Influence of slurry property on filter cake quality on working face of slurry shield[J]. Rock and Soil Mechanics, 2008, 29 (Supple.1): 288- 292
doi: 10.3969/j.issn.1000-7598.2008.z1.058
12 吴迪, 周顺华, 温馨 砂性土层泥水盾构泥浆成膜性能试验[J]. 岩石力学与工程学报, 2015, 34 (Supple.1): 3460- 3467
WU Di, ZHOU Shun-hua, WEN Xin Laboratory test and application of filter cake formation in sand during slurry shield construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (Supple.1): 3460- 3467
13 张亚洲, 闵凡路, 孙涛, 等 硬塑性黏土地层泥水盾构停机引起的地表塌陷机制研究[J]. 岩土力学, 2017, 38 (4): 1141- 1147
ZHANG Ya-zhou, MIN Fan-lu, SUN Tao, et al Analysis of causes for ground subsidence induced by slurry shield shutdown in hard plastic clay[J]. Rock and Soil Mechanics, 2017, 38 (4): 1141- 1147
14 叶伟涛, 王靖禹, 付龙龙, 等 福州中粗砂地层泥水盾构泥浆成膜特性试验研究[J]. 岩石力学与工程学报, 2018, 37 (5): 1260- 1269
YE Wei-tao, WANG Jing-yu, FU Long-long, et al Laboratory test and characteristic of filter film formation of slurry shield in medium-coarse sand stratum in Fuzhou[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (5): 1260- 1269
15 魏代伟, 朱伟, 闵凡路 砂土地层泥水盾构泥膜形成时间及泥浆压力转化率的试验研究[J]. 岩土力学, 2014, 35 (2): 423- 428
WEI Dai-wei, ZHU Wei, MIN Fan-lu Experimental study of forming time of filter cake and conversion rate of slurry pressure in slurry shield in sand stratum[J]. Rock and Soil Mechanics, 2014, 35 (2): 423- 428
16 邵生俊, 李建军, 杨扶银 粗粒土孔隙特征及其对泥浆渗透性的影响[J]. 岩土工程学报, 2009, 31 (1): 59- 65
SHAO Sheng-jun, LI Jian-jun, YANG Fu-yin Pore characteristics of coarse grained soil and their effect on slurry permeability[J]. Chinese Journal of Geotechnical Engineering, 2009, 31 (1): 59- 65
doi: 10.3321/j.issn:1000-4548.2009.01.010
17 RUTH B Study in filtration[J]. Industrial and Engineering Chemistry, 1935, 27 (6): 708- 723
doi: 10.1021/ie50306a024
18 沈胜强, 杜延军, 魏明俐, 等 CaCl2作用下PAC改良膨润土滤饼的渗透特性研究 [J]. 岩石力学与工程学报, 2017, 36 (11): 2810- 2817
SHEN Sheng-qiang, DU Yan-jun, WEI Ming-li, et al Hydraulic conductivity of filter cakes of polyanionic cellulose-amended bentonite slurries in calcium chloride solutions[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (11): 2810- 2817
19 FEHERVARI A, GATES W P, PATTI A F, et al Potential hydraulic barrier performance of cyclic organic carbonate modified bentonite complexes against hyper-salinity[J]. Geotextiles and Geomembranes, 2016, 44 (5): 748- 760
doi: 10.1016/j.geotexmem.2016.06.002
20 TIEN C. Principle of filtration [M]. Oxford: Elsevier, 2012.
21 CHUNG J, DANIEL D E Modified fluid loss test as an improved measure of hydraulic conductivity for bentonite[J]. Geotechnical Testing Journal, 2008, 31 (3): 243- 251
22 NGUYEN T B, LEE C, LIM J, et al Hydraulic characteristics of bentonite cake fabricated on cutoff walls[J]. Clays and Clay Minerals, 2012, 60 (1): 40- 51
doi: 10.1346/CCMN.2012.0600104
23 BEZUIJEN A, SANDERS M P M, HAMER D Parameters that influence the pressure filtration characteristics of bentonite grouts[J]. Géotechnique, 2009, 59 (8): 717- 721
24 范日东, 刘松玉, 杜延军 基于改进滤失试验的重金属污染膨润土渗透特性试验研究[J]. 岩土力学, 2019, 40 (8): 2989- 2996
FAN Ri-dong, LIU Song-yu, DU Yan-jun Modified fluid loss test for measuring the hydraulic conductivity of heavy metal-contaminated bentonites[J]. Rock and Soil Mechanics, 2019, 40 (8): 2989- 2996
25 闵凡路, 魏代伟, 姜腾, 等 泥浆在地层中的渗透特性试验研究[J]. 岩土力学, 2014, 35 (10): 2801- 2806
MIN Fan-lu, WEI Dai-wei, JIANG Teng, et al Experimental study of law of slurry infiltration in strata[J]. Rock and Soil Mechanics, 2014, 35 (10): 2801- 2806
26 RAZAKAMANANTSOA A R, BARAST G, DJERAN M I Hydraulic performance of activated calcium bentonite treated by polyionic charged polymer[J]. Applied Clay Science, 2012, 59-60 (1): 103- 114
27 魏纲, 朱彦华, 尹鑫晟 泥水盾构泥浆渗透试验及成膜规律研究进展[J]. 低温建筑技术, 2021, 43 (3): 76- 81
WEI Gang, ZHU Yan-hua, YIN Xin-sheng Research progress of slurry penetration test and filter cake forming law of slurry shield[J]. Low Temperature Architecture Technology, 2021, 43 (3): 76- 81
28 于泽溪. 盐溶液对钠质膨润土工程特性的影响研究[D]. 杭州: 浙江大学, 2019: 34.
YU Ze-xi. Study on the influence of salt solution on the engineering properties of sodium bentonite [D]. Hangzhou: Zhejiang University, 2019: 34.
29 陈仁朋, 尹鑫晟, 李育超, 等 泥水盾构泥膜渗透性及其对开挖面稳定性影响[J]. 岩土工程学报, 2017, 39 (11): 2102- 2108
CHEN Ren-peng, YIN Xin-sheng, LI Yu-chao, et al Permeability of filter cake and its influence on face stability of slurry shield-driven tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (11): 2102- 2108
doi: 10.11779/CJGE201711018
30 袁大军, 毛家骅, 王将, 等 软岩地层泥水盾构掘进刀盘堵塞现象研究[J]. 中国公路学报, 2022, 35 (4): 177- 185
YUAN Da-jun, MAO Jia-hua, WANG Jiang, et al Study on clogging phenomenon on cutterhead of slurry shield machine tunneling under soft rock[J]. China Journal of Highway and Transport, 2022, 35 (4): 177- 185
doi: 10.3969/j.issn.1001-7372.2022.04.014
31 陈钱宝, 陈雷, 梅晓君 地连墙用聚合物-膨润土复合泥浆泥膜质量研究[J]. 胶体与聚合物, 2017, 35 (3): 117- 119
CHEN Qian-bao, CHEN Lei, MEI Xiao-jun Study on membrane quality of polymer/bentonite composite slurry with its application in diaphragm wall[J]. Chinese Journal of Colloid and Polymer, 2017, 35 (3): 117- 119
doi: 10.13909/j.cnki.1009-1815.2017.03.007
32 刘学彦, 王复明, 袁大军, 等 泥水盾构支护压力设定范围及其影响因素分析[J]. 岩土工程学报, 2019, 41 (5): 908- 917
LIU Xue-yan, WANG Fu-ming, YUAN Da-jun, et al Range of support pressures for slurry shield and analysis of its influence factors[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (5): 908- 917
33 刘海宁, 张亚峰, 刘汉东, 等 砂土地层中泥水盾构掌子面主动破坏模式试验研究[J]. 岩石力学与工程学报, 2019, 38 (3): 572- 581
LIU Hai-ning, ZHANG Ya-feng, LIU Han-dong, et al Experimental study on active failure modes of slurry shield-driven tunnel faces in sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (3): 572- 581
doi: 10.13722/j.cnki.jrme.2018.0920
[1] 尹鑫晟,朱彦华,魏纲,丁智,崔允亮. 泥水盾构开挖面前泥浆渗透距离预测算法[J]. 浙江大学学报(工学版), 2021, 55(12): 2234-2242.
[2] 康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性[J]. 浙江大学学报(工学版), 2021, 55(10): 1877-1884.
[3] 刘晶晶,陈铁林,姚茂宏,魏钰昕,周子健. 砂层盾构隧道泥水劈裂试验与数值研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1715-1726.
[4] 贾连辉,李太运. 超大直径盾构管片拼装机关键技术[J]. 浙江大学学报(工学版), 2020, 54(4): 816-823.
[5] 詹良通, 徐辉, 兰吉武, 刘钊, 陈云敏. 填埋垃圾渗透特性室内外测试研究[J]. J4, 2014, 48(3): 478-486.
[6] 赵权利, 孙红月, 尚岳全, 王智磊. 承压水孔压的时空变化对边坡稳定性影响[J]. J4, 2013, 47(8): 1366-1372.
[7] 柯瀚,王文芳,魏长春,陈云敏,詹良通. 填埋体饱和渗透系数影响因素室内研究[J]. J4, 2013, 47(7): 1164-1170.
[8] 张忠苗 ,林存刚,吴世明,邹健,刘俊伟. 泥水盾构施工引起的地面固结沉降实例研究[J]. J4, 2012, 46(3): 431-440.
[9] 陈国红, 谢康和, 程永峰, 徐妍. 考虑涂抹区渗透系数变化的砂井地基固结解[J]. J4, 2011, 45(4): 665-670.
[10] 卢萌盟 谢康和 张玉国 胡安峰. 考虑土体水平渗透系数变化的复合地基固结解[J]. J4, 2008, 42(11): 1996-2001.