Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (9): 1727-1735    DOI: 10.3785/j.issn.1008-973X.2023.09.004
土木工程、水利工程     
纤维和纳米材料改性水泥稳定道路固废的直剪力学行为
王伟1,2(),黄帅帅1,俞文杰3,车旭明1,李娜1,2,*()
1. 绍兴文理学院 土木工程学院,浙江 绍兴 312000
2. 绍兴市软土地基与建筑结构协同作用重点实验室,浙江 绍兴 312000
3. 绍兴市柯诸高速公路有限公司,浙江 绍兴 312000
Direct shear mechanical behavior of cement stabilized road solid waste modified by fibers and nanomaterials
Wei WANG1,2(),Shuai-shuai HUANG1,Wen-jie YU3,Xu-ming CHE1,Na LI1,2,*()
1. School of Civil Engineering, Shaoxing University, Shaoxing 312000, China
2. Shaoxing Key Laboratory of Interaction between Soft Soil Foundation and Building Structure, Shaoxing 312000, China
3. Shaoxing Kezhu Expressway Limited Company, Shaoxing 312000, China
 全文: PDF(1673 KB)   HTML
摘要:

为了研究纤维-纳米材料对水泥稳定道路固废再生集料抗剪特性的影响,通过直剪试验对水泥稳定再生集料(CA)、聚丙烯纤维水泥稳定再生集料(PCA)、纳米氧化镁水泥稳定再生集料(MCA)、纳米二氧化硅水泥稳定再生集料(SCA)、聚丙烯纤维-纳米氧化镁水泥稳定再生集料(PMCA)和聚丙烯纤维-纳米二氧化硅水泥稳定再生集料(PSCA)的抗剪强度特性进行评价和表征. 试验结果表明:各组试样的剪应力-位移曲线随着垂直压力的增加逐渐由软化型向硬化型转变;MCA、SCA、PMCA、PSCA的摩擦角比CA的摩擦角更大,PCA、MCA、SCA、PMCA、PSCA的黏聚力均大于CA. 提出复合正弦-幂函数(CSP)模型,该模型可以有效地模拟软化型和硬化型应力-位移曲线,比传统模型更具适用性. 建立各组试样的应力-位移关系的通用公式,该公式与实测数据拟合效果良好.

关键词: 道路固废再生集料纤维-纳米材料抗剪强度复合正弦-幂函数(CSP)模型    
Abstract:

To study the effect of fiber-nano materials on the shear characteristics of cement stabilized road solid waste recycled aggregates, the shear strength characteristics of cement-stabilized recycled aggregate (CA), the polypropylene fiber cement-stabilized recycled aggregates (PCA), the nano-magnesia cement-stabilized recycled aggregate (MCA), the nano-silica cement-stabilized recycled aggregate (SCA), the polypropylene fiber-nano-magnesia cement-stabilized recycled aggregate (PMCA), and the polypropylene fiber-nano-silica cement-stabilized recycled aggregate (PSCA) were evaluated and characterized by the direct shear tests. Experimental results showed that the shear stress-displacement curve of each group of the samples gradually changed from the softening to the hardening with the increase of the vertical pressure. MCA, SCA, PMCA and PSCA showed larger friction angle than CA, and the cohesion of PCA、MCA、SCA、PMCA、PSCA was greater than that of CA. A composite sine-power function (CSP) model was proposed, which was more applicable than traditional models. And the softening and the hardening stress-displacement curves were simulated effectively by the CSP model. A general formula for the stress-displacement relationship of each group of the samples was established, and the formula fitted well with the measured data.

Key words: road solid waste    recycled aggregate    fiber-nano materials    shear strength    composite sine-power function (CSP) model
收稿日期: 2022-11-25 出版日期: 2023-10-16
CLC:  TU 447  
基金资助: 国家自然科学基金资助项目(52179107)
通讯作者: 李娜     E-mail: wellswang@usx.edu.cn;lina@usx.edu.cn
作者简介: 王伟(1977—),男,教授,从事软土加固减灾技术研究. orcid.org/0000-0002-7231-6675. E-mail: wellswang@usx.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王伟
黄帅帅
俞文杰
车旭明
李娜

引用本文:

王伟,黄帅帅,俞文杰,车旭明,李娜. 纤维和纳米材料改性水泥稳定道路固废的直剪力学行为[J]. 浙江大学学报(工学版), 2023, 57(9): 1727-1735.

Wei WANG,Shuai-shuai HUANG,Wen-jie YU,Xu-ming CHE,Na LI. Direct shear mechanical behavior of cement stabilized road solid waste modified by fibers and nanomaterials. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1727-1735.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.09.004        https://www.zjujournals.com/eng/CN/Y2023/V57/I9/1727

图 1  道路固废再生集料来源
材料 参数 数值
道路固废再生集料 d 2.69
塑限ωp/% 10.29
液限ωL/% 18.95
塑性指数IP 8.66
液性指数IL ?1.61
最大干密度/(g·cm?3) 2.04
wwp/% 10
wm/% 33.03
聚丙烯纤维 密度/(g·cm?3) 2.6
平均长度/mm 6
直径/μm 19-49
弹性模量/GPa >3.5
抗拉强度/MPa >349
拉伸极限/% >15
熔点/℃ >145
纳米MgO 产品纯度/% 99.8
平均粒度/nm 15-20
理论密度/(g·cm?3) 3.58
纳米SiO2 产品纯度/% 99.90
平均粒度/nm 17
理论密度/(g·cm?3) 0.045
表 1  纤维-纳米材料水泥稳定道路固废试验材料基本参数
图 2  道路固废再生集料的颗粒级配
集料名称 wc/% ww/% wpp/% wMgO/% wSi/%
CA 10 30 0 0 0
PCA 0.6 0 0
MCA 0 1.5 0
SCA 0 0 0.2
PMCA 0.6 1.5 0
PSCA 0.6 0 0.2
表 2  改性道路固废直剪试验方案
图 3  改性道路固废试样的直剪试验曲线
图 4  不同垂直压力下改性道路固废试样的抗剪强度
图 5  垂直压力为100 kPa的改性道路固废试样抗剪强度增幅
集料名称 抗剪强度表达式 $c$/kPa $\varphi $/(°)
CA $\tau_{\rm{m}}= 0.66p+46.67$ 46.67 33.42
PCA $\tau_{\rm{m}} = 0.64p+74.78$ 74.78 32.62
MCA $ \tau_{\rm{m}} = 0.70p+61.58 $ 61.58 34.99
SCA $ \tau_{\rm{m}} = 0.72p+66.84 $ 66.84 35.75
PMCA $ \tau_{\rm{m}} = 0.73p+70.27 $ 70.27 36.13
PSCA $ \tau_{\rm{m}} = 0.75p+75.68 $ 75.68 36.87
表 3  改性道路固废试样的抗剪强度指标
图 6  剪应力-位移特征曲线
图 7  复合正弦-幂函数模型参数不同取值时的典型曲线
集料名称 p/kPa a/kPa b c/kPa d R2
CA 100 115.38 2.75 0.75 0.87 0.978
200 168.55 2.89 0.36 0.79 0.998
300 246.40 3.00 0.24 0.78 0.998
400 353.11 2.10 0.23 0.75 0.999
PCA 100 134.79 2.61 0.51 1.01 0.994
200 200.09 3.01 0.29 0.82 0.997
300 267.15 6.00 0.07 0.66 0.997
400 352.33 8.58 0.04 0.70 0.999
MCA 100 134.83 2.55 0.82 1.19 0.994
200 194.31 3.17 0.31 0.89 0.997
300 272.13 4.04 0.12 0.68 0.999
400 355.98 5.76 0.07 0.77 0.999
SCA 100 130.68 2.61 1.05 1.09 0.996
200 199.03 3.11 0.36 0.88 0.998
300 277.80 2.95 0.35 1.11 0.998
400 353.75 4.46 0.12 0.90 0.999
PMCA 100 144.49 2.68 0.70 1.15 0.994
200 208.26 2.52 0.49 1.00 0.999
300 286.45 2.73 0.26 0.92 0.999
400 380.82 2.34 0.31 1.03 0.999
PSCA 100 155.21 2.66 0.67 1.13 0.988
200 209.14 3.39 0.27 0.68 0.991
300 297.23 2.67 0.39 1.09 0.998
400 385.63 3.08 0.21 1.00 0.999
表 4  改性道路固废试样的CSP模型拟合参数
集料名称 关系式 集料名称 关系式
CA a=791.04p+23.1 SCA a=747.98p+53.32
b=?26p2+11.16p+1.85 b=25.25p2?7.23p+3.2
c=9.5p2?6.43p+1.29 c=11.5p2?8.55p+1.74
d=1.25p2?p+0.95 d=?0.34p+1.08
PCA a=719.68p+58.67 PMCA a=787.18p+58.21
b=54.5p2?6.35p+2.55 b=?5.75p2+2.06p+2.48
c=4.75p2?4.01p+0.87 c=6.5p^2?4.65p+1.12
d=5.75p2?3.97p+1.36 d=6.5p2?3.69p+1.46
MCA a=741.27p+54 PSCA a=779.35p+66.96
b=27.5p2?3.25p+2.63 b=?8p2+4.54p+2.42
c=11.5p2?8.19p+1.52 c=5.5p2?4.01p+0.97
d=9.75p2?6.35p+1.74 d=9p2?4.48p+1.42
表 5  改性道路固废试样CSP模型参数与垂直压力关系
图 8  CSP模型预测曲线与改性道路固废直剪试验实测值
15 成次次, 俞文杰, 刘静静, 等 纳米MgO改性水泥膨胀土短龄期内的三轴力学特性与数学模型研究[J]. 铁道科学与工程学报, 2021, 18 (9): 2307- 2315
CHENG Ci-ci, YU Wen-jie, LIU Jing-jing, et al Study on triaxial mechanical properties and mathematical model of nano-MgO modified cement expansive soil in a short period of time[J]. Journal of Railway Science and Engineering, 2021, 18 (9): 2307- 2315
doi: 10.19713/j.cnki.43-1423/u.T20201048
16 KONG R , YAN B, XU J, et al. Physical homogenization and chemical stability of nano-SiO2 treated loess [J]. Soil Mechanics and Foundation Engineering, 2019, 56 (5): 336- 339
doi: 10.1007/s11204-019-09611-9
17 NASERI F, IRANI M, DEHKHODARAJABI M Effect of graphene oxide nanosheets on the geotechnical properties of cemented silty soil[J]. Archives of Civil and Mechanical Engineering, 2016, 16 (4): 695- 701
doi: 10.1016/j.acme.2016.04.008
18 WANG W, ZHANG C, LI N, et al Characterisation of nano magnesia-cement-reinforced seashore soft soil by direct-shear test[J]. Marine Georesources and Geotechnology, 2019, 37 (8): 989- 998
doi: 10.1080/1064119X.2018.1515283
19 YAO K, AN D L, WANG W, et al Effect of nano-MgO on mechanical performance of cement stabilized silty clay[J]. Marine Georesources and Geotechnology, 2020, 38 (2): 250- 255
doi: 10.1080/1064119X.2018.1564406
20 CUI H Z, JIN Z Y, BAO X H, et al Effect of carbon fiber and nanosilica on shear properties of silty soil and the mechanisms[J]. Construction and Building Materials, 2018, 189: 286- 295
doi: 10.1016/j.conbuildmat.2018.08.181
21 ESTABRAGH A R, KHOLOOSI M, GHAZIANI F, et al Mechanical and leaching behavior of a stabilized and solidified anthracene-contaminated soil[J]. Journal of Environmental Engineering, 2018, 144 (2): 04017098
doi: 10.1061/(ASCE)EE.1943-7870.0001311
22 YADAV J S, TIWARI S K Effect of waste rubber fibres on the geotechnical properties of clay stabilized with cement[J]. Applied Clay Science, 2017, 149: 97- 110
doi: 10.1016/j.clay.2017.07.037
23 鹿群, 郭少龙, 王闵闵, 等 纤维水泥土力学性能的试验研究[J]. 岩土力学, 2016, 37 (Suppl.2): 421- 426
LU Qun, GUO Shao-long, WANG Min-min, et al Experimental study of mechanical properties of fiber cement soil[J]. Rock and Soil Mechanics, 2016, 37 (Suppl.2): 421- 426
doi: 10.16285/j.rsm.2016.S2.055
24 CHOOBBASTI A J, VAFAEI A, KUTANAEI S S Static and cyclic triaxial behavior of cemented sand with nanosilica[J]. Journal of Materials in Civil Engineering, 2018, 30 (10): 04018269
doi: 10.1061/(ASCE)MT.1943-5533.0002464
25 XIAO H W, LIU Y A prediction model for the tensile strength of cement-admixed clay with randomly orientated fibres[J]. European Journal of Environmental and Civil Engineering, 2018, 22 (9): 1131- 1145
doi: 10.1080/19648189.2016.1232662
26 GAO C H, DU G Y, GUO Q, et al Static and dynamic behaviors of basalt fiber reinforced cement-soil after freeze-thaw cycle[J]. KSCE Journal of Civil Engineering, 2020, 24 (12): 3573- 3583
doi: 10.1007/s12205-020-2266-5
1 MARTINEZ-ECHEVARRIA M J, LOPEZ-ALONSO M, GARACH L, et al Crushing treatment on recycled aggregates to improve their mechanical behaviour for use in unbound road layers[J]. Construction and Building Materials, 2020, 263: 120517
doi: 10.1016/j.conbuildmat.2020.120517
2 BAO Z K, LEE W M W, LU W S Implementing on-site construction waste recycling in Hong Kong: barriers and facilitators[J]. Science of The Total Environment, 2020, 747: 141091
doi: 10.1016/j.scitotenv.2020.141091
27 中华人民共和国交通运输部. 公路工程无机结合料稳定材料试验规程: JTG E51—2009 [S]. 北京: 人民交通出版社, 2009.
28 中华人民共和国交通运输部. 公路土工试验规程: JTG 3430—2020 [S]. 北京: 人民交通出版社, 2020.
3 SILVA R V, DE BRITO J, DHIR R K Use of recycled aggregates arising from construction and demolition waste in new construction applications[J]. Journal of Cleaner Production, 2019, 236: 117629
doi: 10.1016/j.jclepro.2019.117629
4 MA M X, TAM V W Y, LE K N, et al Challenges in current construction and demolition waste recycling: a China study[J]. Waste Management, 2020, 118: 610- 625
doi: 10.1016/j.wasman.2020.09.030
5 MOHAMMADINIA A, NAEINI M, ARULRAJAH A, et al Shakedown analysis of recycled materials as railway capping layer under cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2020, 139: 106423
doi: 10.1016/j.soildyn.2020.106423
29 中华人民共和国水利部. 土工试验方法标准: GB/T 50123—2019 [S]. 北京: 中国计划出版社, 2019.
30 WEI J H, KONG F X, LIU J, et al Effect of sisal fiber and polyurethane admixture on the strength and mechanical behavior of sand[J]. Polymers, 2018, 10 (10): 1121
doi: 10.3390/polym10101121
6 曹智国, 章定文 水泥土无侧限抗压强度表征参数研究[J]. 岩石力学与工程学报, 2015, 34 (Suppl.1): 3446- 3454
CAO Zhi-guo, ZHANG Ding-wen Key parameters controlling unconfined compressive strength of soil-cement mixtures[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (Suppl.1): 3446- 3454
doi: 10.13722/j.cnki.jrme.2014.0031
31 王伟, 刘静静, 李娜, 等 纳米SiO2改性滨海水泥土的短龄期力学性能与微观机制 [J]. 复合材料学报, 2022, 39 (4): 1701- 1704
WANG Wei, LIU Jing-jing, LI Na, et al Mechanical properties and micro mechanism of nano-SiO2 modified coastal cement soil at short age [J]. Acta Materiae Compositae Sinica, 2022, 39 (4): 1701- 1704
7 GUPTA N, KLUGE M, CHADIK P A, et al Recycled concrete aggregate as road base: leaching constituents and neutralization by soil Interactions and dilution[J]. Waste Management, 2018, 72: 354- 361
doi: 10.1016/j.wasman.2017.11.018
8 ZHANG J H, DING L, LI F, et al Recycled aggregates from construction and demolition wastes as alternative filling materials for highway subgrades in China[J]. Journal of Cleaner Production, 2020, 255: 120223
doi: 10.1016/j.jclepro.2020.120223
9 阮波, 阮庆, 田晓涛, 等 淤泥质粉质黏土水泥土无侧限抗压强度影响因素的正交试验研究[J]. 铁道科学与工程学报, 2013, 10 (6): 45- 48
doi: 10.3969/j.issn.1672-7029.2013.06.008
32 WANG W, WANG Y X, LV B F, et al Strength characteristics of cement-reinforced recycled aggregate modified with nano-MgO as road bases[J]. Case Studies in Construction Materials, 2022, 17: e01456
doi: 10.1016/j.cscm.2022.e01456
33 LIU J, WANG Y, KANUNGO D P, et al Study on the brittleness characteristics of sand reinforced with polypropylene fiber and polyurethane organic polymer[J]. Fibers and Polymers, 2019, 20 (3): 620- 632
doi: 10.1007/s12221-019-8779-1
9 RUAN Bo, RUAN Qing, TIAN Xiao-tao, et al The study of the orthotropic test on cement-soil unconfined compressive strength of muddy silty clay[J]. Journal of Railway Science and Engineering, 2013, 10 (6): 45- 48
doi: 10.3969/j.issn.1672-7029.2013.06.008
10 XIAO H W, WANG W, GOH S H Effectiveness study for fly ash cement improved marine clay[J]. Construction and Building Materials, 2017, 157: 1053- 1064
doi: 10.1016/j.conbuildmat.2017.09.070
34 ZHOU L L, GUO S C, ZHANG Z H, et al Mechanical behavior and durability of coral aggregate concrete and bonding performance with fiber-reinforced polymer (FRP) bars: a critical review[J]. Journal of Cleaner Production, 2021, 289: 125652
doi: 10.1016/j.jclepro.2020.125652
35 张涛, 蔡国军, 刘松玉, 等 橡胶–砂颗粒混合物强度特性及微观机制试验研究[J]. 岩土工程学报, 2017, 39 (6): 1082- 1088
doi: 10.11779/CJGE201706014
11 BAHMANI S H, HUAT B B K, ASADI A, et al Stabilization of residual soil using SiO2 nanoparticles and cement [J]. Construction and Building Materials, 2014, 64: 350- 359
doi: 10.1016/j.conbuildmat.2014.04.086
12 张俊, 翁兴中, 刘军忠, 等 复合固化砂土力学及水稳性能试验研究[J]. 材料导报, 2014, 28 (24): 115- 119+124
35 ZHANG Tao, CAI Guo-jun, LIU Song-yu, et al Experimental study on strength characteristics and micromechanism of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (6): 1082- 1088
doi: 10.11779/CJGE201706014
36 王丽琴, 鹿忠刚, 邵生俊 岩土体复合幂–指数非线性模型[J]. 岩石力学与工程学报, 2017, 36 (5): 1269- 1278
doi: 10.13722/j.cnki.jrme.2016.0634
12 ZHANG Jun, WENG Xing-zhong, LIU jun-zhong, et al Experimental research on mechnical property and water stability of complex stabilized sandy soil[J]. Materials Reports, 2014, 28 (24): 115- 119+124
13 XIAO Y, HE X, EVANS T, et al Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145: 04019048
doi: 10.1061/(ASCE)GT.1943-5606.0002108
36 WANG Li-qin, LU Zhong-gang, SHAO Sheng-jun A composite power exponential nonlinear model of rock and soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (5): 1269- 1278
doi: 10.13722/j.cnki.jrme.2016.0634
37 YAO K, LI N, CHEN D H, et al Generalized hyperbolic formula capturing curing period effect on strength and stiffness of cemented clay[J]. Construction and Building Materials, 2019, 199: 63- 71
doi: 10.1016/j.conbuildmat.2018.11.288
[1] 孙浩,唐坤林,金爱兵,刘美辰,陈帅军,李木芽. 单一粗颗粒对矿岩颗粒体系剪切特性影响试验[J]. 浙江大学学报(工学版), 2022, 56(10): 2037-2048.
[2] 薛阳,吴益平,苗发盛,李麟玮. 基于随机场-贝叶斯的滑面抗剪强度参数反演[J]. 浙江大学学报(工学版), 2021, 55(6): 1118-1127.
[3] 丁绚晨,陈育民,张鑫磊. 微生物加固钙质砂环剪试验研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1690-1696.
[4] 徐辉, 缪建冬, 陈萍, 詹良通, 罗小勇. 药剂稳定化垃圾焚烧飞灰的工程特性测试研究[J]. 浙江大学学报(工学版), 2019, 53(1): 1-10.
[5] 李智宁, 韩同春, 豆红强, 邱子义. 螺旋土钉钻进成孔扭矩分析[J]. 浙江大学学报(工学版), 2015, 49(8): 1426-1433.
[6] 王国庆, 程壮, 王振宇, 陈枫, 张毅. 带剪力键钢板-高强灌浆体的抗剪承载力[J]. 浙江大学学报(工学版), 2015, 49(7): 1282-1287.
[7] 张诚成, 朱鸿鹄, 唐朝生, 施斌. 纤维加筋土界面渐进性破坏模型[J]. 浙江大学学报(工学版), 2015, 49(10): 1952-1959.
[8] 张振营,严立俊. 城市新鲜生活垃圾变形与强度的关联特性[J]. 浙江大学学报(工学版), 2014, 48(11): 1962-1967.
[9] 钟世英,凌道盛,吴晓君,陈云敏. 月壤岩土工程问题研究进展[J]. J4, 2012, 46(5): 777-784.
[10] 詹良通. 非饱和膨胀土边坡中土水相互作用机理[J]. J4, 2006, 40(3): 494-500.