Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (10): 2037-2048    DOI: 10.3785/j.issn.1008-973X.2022.10.015
土木工程、交通工程、海洋工程     
单一粗颗粒对矿岩颗粒体系剪切特性影响试验
孙浩1,2(),唐坤林1,2,3,金爱兵1,2,*(),刘美辰1,2,陈帅军1,2,李木芽1,2
1. 北京科技大学 金属矿山高效开采与安全教育部重点实验室(北京科技大学),北京 100083
2. 北京科技大学 土木与资源工程学院,北京 100083
3. 中国恩菲工程技术有限公司,北京 100038
Experimental study on influence of single coarse particle on shear properties of ore-rock particle system
Hao SUN1,2(),Kun-lin TANG1,2,3,Ai-bing JIN1,2,*(),Mei-chen LIU1,2,Shuai-jun CHEN1,2,Mu-ya LI1,2
1. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China
2. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
3. China ENFI Engineering Corporation, Beijing 100038, China
 全文: PDF(2902 KB)   HTML
摘要:

为了探究不同垂直压力以及不同粒径、形状和位置的单一粗颗粒对矿岩颗粒体系抗剪强度和运移特性的影响,采用自主设计的矿岩颗粒体系非接触式剪切特性监测与分析系统开展直接剪切试验. 研究结果表明,当形状因子>0.5时,添加粗颗粒会显著增加5~10 mm矿岩颗粒体系的抗剪强度,粗细颗粒粒径比为3.07~4.23. 粗颗粒在剪出口时的矿岩颗粒体系抗剪强度最大,剪入口次之,位于可视面中心位置时的抗剪强度最小. 在所研究的取值范围内,矿岩颗粒体系抗剪强度随着垂直压力的增加呈线性增长规律. 当形状因子<0.5时,随着粗颗粒形状因子的增加,抗剪强度无显著变化,当形状因子≥0.5时,随着粗颗粒形状因子的增加,抗剪强度缓慢增加. 相较于粗颗粒形状,垂直压力对矿岩颗粒体系抗剪强度的影响更显著. 在所研究的取值范围内,不同粗颗粒粒径、形状和垂直压力影响下的四周细颗粒运移轨迹均符合Boltzmann分布. 粗颗粒四周细颗粒的垂直位移随着粗颗粒形状因子的增加会显著增加,随着垂直压力的增加,则会降低四周细颗粒的垂直位移;粗颗粒形状因子和垂直压力的二者增加均会提高细颗粒运移轨迹方向的有序程度.

关键词: 粗颗粒矿岩颗粒体系直剪试验抗剪强度运移轨迹图像识别    
Abstract:

A self-designed ore-rock particle system non-contact shear characteristics monitoring and analysis system was adopted to conduct direct shear tests in order to analyze the influence of single coarse particle with different vertical pressures and different sizes, shapes and positions on the shear strength and migration characteristics of the ore-rock particle system. The research results were as follows. The addition of coarse particles significantly increased the shear strength of the 5-10 mm ore-rock particle system when the shape factor was larger than 0.5, where the coarse to fine particle size ratio ranged from 3.07 to 4.23. The shear strength of the ore-rock particle system was the largest when the coarse particle was at the shear exit, followed by the shear entrance, and the shear strength was the smallest when it was located at the center of the visible surface. The shear strength of ore-rock particle system increased linearly with the increase of vertical pressure within the range of studied values. The shear strength had no significant change with the increase of coarse particle shape factor when the shape factor was less than 0.5. The shear strength increased slowly with the increase of coarse particle shape factor when shape factor was greater than or equal to 0.5. The effects of vertical pressure on the shear strength of ore-rock particle system were more significant compared with the shape of coarse particle. The migration trajectories of fine particles around under the influence of different coarse particle size, shape and vertical pressure all correspond to Boltzmann distribution within the range of values studied. The vertical displacement of fine particles around coarse particle will significantly increase with the increase of coarse particle shape factor, and decrease with the increase of vertical pressure. The increase of coarse particle shape factor and vertical pressure will improve the order of fine particle migration trajectory.

Key words: coarse particle    ore-rock particle system    direct shear test    shear strength    migration trajectory    image recognition
收稿日期: 2021-12-24 出版日期: 2022-10-25
CLC:  TD 804  
基金资助: 国家自然科学基金资助项目(52004017, 52174106);中央高校基本科研业务费专项资金资助项目(FRF-IDRY-20-021)
通讯作者: 金爱兵     E-mail: sunhao2019@ustb.edu.cn;jinaibing@ustb.edu.cn
作者简介: 孙浩(1992—),男,讲师,硕导,从事采矿工艺与理论、岩石力学的研究. orcid.org/0000-0001-9190-3237. E-mail: sunhao2019@ustb.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
孙浩
唐坤林
金爱兵
刘美辰
陈帅军
李木芽

引用本文:

孙浩,唐坤林,金爱兵,刘美辰,陈帅军,李木芽. 单一粗颗粒对矿岩颗粒体系剪切特性影响试验[J]. 浙江大学学报(工学版), 2022, 56(10): 2037-2048.

Hao SUN,Kun-lin TANG,Ai-bing JIN,Mei-chen LIU,Shuai-jun CHEN,Mu-ya LI. Experimental study on influence of single coarse particle on shear properties of ore-rock particle system. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2037-2048.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.10.015        https://www.zjujournals.com/eng/CN/Y2022/V56/I10/2037

图 1  剪切装置与非接触式剪切特性监测与分析系统
图 2  矿岩颗粒与粗颗粒图
序号 研究内容 dc/df1 rv pv/kPa 粗颗粒位置
A-1 粗细颗粒粒径比对矿岩颗粒体系抗剪强度的影响 1.00 0.745 100 可视面中心
A-2 2.10
A-3 3.07
A-4 4.23
A-5 5.11
A-6 6.07
A-7 7.04
B-1 保持尺寸不变,探究颗粒形状和垂直压力对矿岩颗粒体系抗剪强度和粗细颗粒运移特性的影响 4.23 0.201 100 可视面中心
B-2 0.304 100
B-3 0.409 100
B-4 0.507 100
B-5 0.201 200
B-6 0.304 200
B-7 0.409 200
B-8 0.507 200
B-9 0.201 300
B-10 0.304 300
B-11 0.409 300
B-12 0.507 100
B-13 0.540 100
B-14 0.745 100
B-15 0.939 100
B-16 0.540 200
B-17 0.745 200
B-18 0.939 200
B-19 0.540 300
B-20 0.745 300
B-21 0.939 300
C-1 保持形状、压力尺寸不变,探究粗颗粒布设位置对矿岩颗粒体系抗剪强度和粗细颗粒运移特性的影响 4.23 0.745 100 可视面中心左侧75 mm
C-2 可视面中心
C-3 可视面中心右侧75 mm
C-4 可视面中心上侧50 mm
C-5 可视面中心下侧50 mm
C-6 可视面中心左侧75 mm上侧50 mm
C-7 可视面中心右侧75 mm上侧50 mm
C-8 可视面中心左侧75 mm下侧50 mm
C-9 可视面中心右侧75 mm下侧50 mm
表 1  粗颗粒对矿岩颗粒体系剪切特性影响研究的试验方案
图 3  粗颗粒布设位置的示意图
图 4  不同粗颗粒粒径影响下的矿岩颗粒体系抗剪强度
图 5  不同粗颗粒形状和垂直压力影响下的抗剪强度
图 6  100 kPa垂直压力下不同粗颗粒位置影响的抗剪强度
图 7  颗粒轨迹追踪过程
图 8  不同形状因子及垂直压力对粗颗粒位移的影响
图 9  不同位置粗颗粒的运移轨迹及抗剪强度的关联图
图 10  细颗粒的运移轨迹识别与拟合曲线
图 11  不同粗颗粒形状对四周细颗粒运移轨迹的影响
图 12  不同垂直压力对粗颗粒四周细颗粒运移轨迹的影响
1 KOU Bin-quan, CAO Yi-xin, LI Jin-dong, et al Granular materials flow like complex fluids[J]. Nature, 2017, 551: 360- 363
doi: 10.1038/nature24062
2 孙其诚, 刘晓星, 张国华, 等 密集颗粒物质的介观结构[J]. 力学进展, 2017, 47: 263- 308
SUN Qi-cheng, LIU Xiao-xing, ZHANG Guo-hua, et al Mesoscopic structure of dense granular matter[J]. Progress in Mechanics, 2017, 47: 263- 308
doi: 10.6052/1000-0992-16-021
3 吴顺川, 金爱兵, 刘洋. 边坡工程[M]. 北京: 冶金工业出版社, 2017.
4 王光进, 杨春和, 张超, 等 超高排土场的粒径分级及其边坡稳定性分析研究[J]. 岩土力学, 2011, 32 (3): 905- 913
WANG Guang-jin, YANG Chun-he, ZHANG Chao, et al Grain size classification of ultra-high dumping site and analysis of slope stability[J]. Rock and Soil Mechanics, 2011, 32 (3): 905- 913
doi: 10.3969/j.issn.1000-7598.2011.03.044
5 李鹏越, 舒继森, 韩流, 等 不同粒径块体在散体边坡上的滚落规律研究[J]. 化工矿物与加工, 2015, 44 (3): 44- 48
LI Peng-yue, SHU Ji-sen, HAN Liu, et al Research on the rolling law of blocks with different particle sizes on granular slope[J]. Industrial Minerals and Processing, 2015, 44 (3): 44- 48
6 赵洪宝, 魏子强, 王涛, 等 考虑块体组成的排土场边坡对振动作用响应模拟[J]. 煤炭学报, 2019, 44 (Supple.2): 544- 552
ZHAO Hong-bao, WEI Zi-qiang, WANG Tao, et al Simulation of response to vibration of dumps slope composed of blocks[J]. Journal of China Coal Society, 2019, 44 (Supple.2): 544- 552
7 孙壮壮, 马刚, 周伟, 等 颗粒形状对堆石颗粒破碎强度尺寸效应的影响[J]. 岩土力学, 2021, 42 (2): 430- 438
SUN Zhuang-zhuang, MA Gang, ZHOU Wei, et al The influence of particle shape on the size effect of rockfill particle crushing strength[J]. Rock and Soil Mechanics, 2021, 42 (2): 430- 438
8 YANG Han, XU Wen-jie, SUN Qi-cheng, et al Study on the meso-structure development in direct shear tests of a granular material[J]. Powder Technology, 2017, 314: 129- 139
doi: 10.1016/j.powtec.2016.12.084
9 杨涵, 徐文杰, 张启斌 散体颗粒介质变形局部化宏-细观机制研究[J]. 岩石力学与工程学报, 2015, 34 (8): 1692- 1701
YANG Han, XU Wen-jie, ZHANG Qi-bin Macro- and meso-mechanism of strain localization in granular material[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (8): 1692- 1701
10 薛亚东, 刘忠强, 黄宏伟 砂砾石混合物抗剪强度特性试验研究[J]. 土木建筑与环境工程, 2012, 34 (6): 75- 79
XUE Ya-dong, LIU Zhong-qiang, HUANG Hong-wei Experimental study on shear strength characteristics of sand gravel mixture[J]. Civil Architecture and Environmental Engineering, 2012, 34 (6): 75- 79
11 赵阳, 周辉, 冯夏庭, 等 不同因素影响下层间错动带颗粒破碎和剪切强度特性试验研究[J]. 岩土力学, 2013, 34 (1): 13- 22
ZHAO Yang, ZHOU Hui, FENG Xia-ting, et al Experimental study on particle breaking and shear strength characteristics of lower interlayer dislocation zone affected by different factors[J]. Rock and Soil Mechanics, 2013, 34 (1): 13- 22
doi: 10.16285/j.rsm.2013.01.008
12 WEI Hou-zhen, LI Xiao-xiao, ZHANG Shuo-dong, et al Influence of particle breakage on drained shear strength of calcareous sands[J]. International Journal of Geomechanics, 2021, 21 (7): 04021118
doi: 10.1061/(ASCE)GM.1943-5622.0002078
13 华文俊, 肖源杰, 王萌, 等 级配与颗粒形状对复杂堆积体路基填料剪切性能影响的离散元模拟研究[J]. 中南大学学报: 自然科学版, 2021, 52 (7): 2332- 2348
HUA Wen-jun, XIAO Yuan-jie, WANG Meng, et al Discrete element simulation study on the influence of gradation and particle shape on the shear performance of complex accumulation subgrade filler[J]. Journal of Central South University: Natural Science Edition, 2021, 52 (7): 2332- 2348
14 柴维, 龙志林, 旷杜敏, 等 直剪剪切速率对钙质砂强度及变形特征的影响[J]. 岩土力学, 2019, 40 (Supple.1): 359- 366
CHAI Wei, LONG Zhi-lin, KUANG Du-min, et al Influence of direct shear rate on strength and deformation characteristics of calcareous sand[J]. Rock and Soil Mechanics, 2019, 40 (Supple.1): 359- 366
15 赵晓彦, 万宇豪, 张肖兵 汶马高速公路千枚岩堆积体岩块定向性试验研究[J]. 岩土力学, 2020, 41 (1): 175- 184
ZHAO Xiao-yan, WAN Yu-hao, ZHANG Xiao-bing Experimental study on the orientation of phyllite deposits on Wen-Ma Expressway[J]. Rock and Soil Mechanics, 2020, 41 (1): 175- 184
16 成浩, 王晅, 张家生, 等 颗粒粒度与级配对碎石料与结构接触面剪切特性的影响[J]. 中南大学学报: 自然科学版, 2018, 49 (4): 925- 932
CHENG Hao, WANG Xuan, ZHANG Jia-sheng, et al The influence of particle size and gradation on the shear characteristics of the interface between crushed stone and structure[J]. Journal of Central South University: Natural Science Edition, 2018, 49 (4): 925- 932
17 林呈祥, 钟世英, 凌道盛 模拟月壤颗粒形状特征及其对抗剪强度影响分析[J]. 东北大学学报: 自然科学版, 2016, 37 (11): 1640- 1644
LIN Cheng-xiang, ZHONG Shi-ying, LING Dao-sheng Simulated lunar soil particle shape characteristics and analysis of its influence on shear strength[J]. Journal of Northeastern University: Natural Science Edition, 2016, 37 (11): 1640- 1644
18 严颖, 季顺迎 颗粒形态对离散介质剪切强度的影响[J]. 岩土力学, 2009, 30 (Supple.1): 225- 230
YAN Ying, JI Shun-ying The influence of particle shape on the shear strength of discrete media[J]. Rock and Soil Mechanics, 2009, 30 (Supple.1): 225- 230
doi: 10.3969/j.issn.1000-7598.2009.z1.045
19 李坤, 王玉峰, 程谦恭, 等 分形粒径分布对颗粒流粒径分选的影响规律[J]. 岩石力学与工程学报, 2021, 40 (2): 330- 343
LI Kun, WANG Yu-feng, CHENG Qian-gong, et al The influence of fractal particle size distribution on particle flow particle size sorting[J]. Journal of Rock Mechanics and Engineering, 2021, 40 (2): 330- 343
doi: 10.13722/j.cnki.jrme.2020.0748
20 金爱兵, 陈帅军, 孙浩, 等 基于不均匀粒径分布的颗粒穿流特性[J]. 中南大学学报: 自然科学版, 2020, 51 (6): 1673- 1681
JIN Ai-bing, CHEN Shuai-jun, SUN Hao, et al Particle cross flow characteristics based on uneven particle size distribution[J]. Journal of Central South University: Edition of Natural Science, 2020, 51 (6): 1673- 1681
21 CUI L, O'SULLIVAN C Exploring the macro-and micro-scale response of an idealised granular material in the direct shear apparatus[J]. Géotechnique, 2006, 56 (7): 455- 468
22 ZHANG L, THORNTON C A numerical examination of the direct shear test[J]. Géotechnique, 2007, 57 (4): 343- 354
23 CHEN J, GAO R, LIU Y, et al Numerical exploration of the behavior of coal-fouled ballast subjected to direct shear test[J]. Construction and Building Materials, 2021, 273: 121927
doi: 10.1016/j.conbuildmat.2020.121927
24 LEI Dong, HUANG Jin-feng, XU Wen-xiang, et al Deformation analysis of shear band in granular materials via a robust plane shear test and numerical simulation[J]. Powder Technology, 2018, 323: 385- 392
doi: 10.1016/j.powtec.2017.10.027
25 孔亮, 陈凡秀, 李杰 基于数字图像相关法的砂土细观直接剪切试验及其颗粒流数值模拟[J]. 岩土力学, 2013, 34 (10): 2971- 2978
KONG Liang, CHEN Fan-xiu, LI Jie Meso scale direct shear test of sand and numerical simulation of particle flow based on digital image correlation method[J]. Rock and Soil Mechanics, 2013, 34 (10): 2971- 2978
26 JING L, KWOK C Y, LEUNG Y F Micromechanical origin of particle size segregation[J]. Physical Review Letters, 2017, 118 (11): 118001
doi: 10.1103/PhysRevLett.118.118001
27 XU Yu-peng, GAO Xi, LI Ting-wen Numerical study of the bi-disperse particles segregation inside a spherical tumbler with discrete element method (DEM)[J]. Computers and Mathematics with Applications, 2021, 81: 588- 601
doi: 10.1016/j.camwa.2019.07.018
28 JOHN M N T G, PARMESH G, PETER K Particle-size segregation in dense granular avalanches[J]. Comptes Rendus Physique, 2015, 16 (1): 73- 85
doi: 10.1016/j.crhy.2015.01.004
29 TREWHELA T, ANCEY C, GRAY J M N T An experimental scaling law for particle-size segregation in dense granular flows[J]. Journal of Fluid Mechanics, 2021, 916 (455): A55
30 TREWHELA T, GRAY J, ANCEY C Large particle segregation in two-dimensional sheared granular flows[J]. Physical Review Fluids, 2021, 6 (5): 54302
doi: 10.1103/PhysRevFluids.6.054302
31 何银枝, 谢跃波, 吴淑瑛 应用Image-pro plus简易无创分析新生儿黄疸颜色变化的临床研究[J]. 基层医学论坛, 2021, 25 (2): 168- 170
HE Yin-zhi, XIE Yue-bo, WU Shu-ying Clinical study on noninvasive analysis of color change of neonatal jaundice with Image-pro plus[J]. Basic Medical Forum, 2021, 25 (2): 168- 170
32 LINDSAY D J, YAMAGUCHI A, GROSSMANN M M, et al Vertical profiles of marine particulates: a step towards global scale comparisons using an autonomous visual Plankton recorder[J]. Bulletin of the Plankton Society of Japan, 2014, 61 (1): 72- 81
33 CHEN Qi-lin, LI Wei, CHEN Zhu Analysis of microstructure characteristics of high sulfur steel based on computer image processing technology[J]. Results in Physics, 2019, 12: 392- 397
doi: 10.1016/j.rinp.2018.10.037
34 刘钢, 赵明志, 陆瑞, 等 碎石颗粒形态特征及其与堆积特性的关系[J]. 岩土力学, 2019, 40 (12): 4644- 4651
LIU Gang, ZHAO Ming-zhi, LU Rui, et al The morphological characteristics of gravel particles and their relationship with accumulation characteristics[J]. Rock and Soil Mechanics, 2019, 40 (12): 4644- 4651
35 刘钢, 陆瑞, 赵明志, 等 基于椭球模型的圆砾堆积特性分析[J]. 岩土力学, 2019, 40 (11): 4371- 4379
LIU Gang, LU Rui, ZHAO Ming-zhi, et al Analysis of round gravel accumulation characteristics based on ellipsoid model[J]. Rock and Soil Mechanics, 2019, 40 (11): 4371- 4379
36 HASHIM M. Particle percolation in block caving mines [D]. Sydney: University of New South Wales, 2011.
37 SENYUR M G The fabric of coal-mine refuse as backfilling material and its relation to grain-size distribution parameters[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1998, 98 (1): 39- 47
38 蒋明镜, 王富周, 朱合华 单粒组密砂剪切带的直剪试验离散元数值分析[J]. 岩土力学, 2010, 31 (1): 253- 257
JIANG Ming-jing, WANG Fu-zhou, ZHU He-hua Discrete element numerical analysis of the direct shear test of the single-grain dense sand shear band[J]. Rock and Soil Mechanics, 2010, 31 (1): 253- 257
doi: 10.3969/j.issn.1000-7598.2010.01.043
[1] 龚涛,刘开富,谢新宇,许纯泰,娄扬,郑凌逶. 基于次加载面摩擦模型的接触面剪切特性研究[J]. 浙江大学学报(工学版), 2022, 56(7): 1328-1335, 1352.
[2] 鞠晓臣,赵欣欣,钱胜胜. 基于自注意力机制的桥梁螺栓检测算法[J]. 浙江大学学报(工学版), 2022, 56(5): 901-908.
[3] 薛阳,吴益平,苗发盛,李麟玮. 基于随机场-贝叶斯的滑面抗剪强度参数反演[J]. 浙江大学学报(工学版), 2021, 55(6): 1118-1127.
[4] 郑英杰,吴松荣,韦若禹,涂振威,廖进,刘东. 基于目标图像FCM算法的地铁定位点匹配及误报排除方法[J]. 浙江大学学报(工学版), 2021, 55(3): 586-593.
[5] 丁绚晨,陈育民,张鑫磊. 微生物加固钙质砂环剪试验研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1690-1696.
[6] 陈巧红,陈翊,李文书,贾宇波. 多尺度SE-Xception服装图像分类[J]. 浙江大学学报(工学版), 2020, 54(9): 1727-1735.
[7] 徐辉, 缪建冬, 陈萍, 詹良通, 罗小勇. 药剂稳定化垃圾焚烧飞灰的工程特性测试研究[J]. 浙江大学学报(工学版), 2019, 53(1): 1-10.
[8] 李智宁, 韩同春, 豆红强, 邱子义. 螺旋土钉钻进成孔扭矩分析[J]. 浙江大学学报(工学版), 2015, 49(8): 1426-1433.
[9] 王国庆, 程壮, 王振宇, 陈枫, 张毅. 带剪力键钢板-高强灌浆体的抗剪承载力[J]. 浙江大学学报(工学版), 2015, 49(7): 1282-1287.
[10] 张诚成, 朱鸿鹄, 唐朝生, 施斌. 纤维加筋土界面渐进性破坏模型[J]. 浙江大学学报(工学版), 2015, 49(10): 1952-1959.
[11] 张振营,严立俊. 城市新鲜生活垃圾变形与强度的关联特性[J]. 浙江大学学报(工学版), 2014, 48(11): 1962-1967.
[12] 钟世英,凌道盛,吴晓君,陈云敏. 月壤岩土工程问题研究进展[J]. J4, 2012, 46(5): 777-784.
[13] 詹良通. 非饱和膨胀土边坡中土水相互作用机理[J]. J4, 2006, 40(3): 494-500.