Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (3): 488-495    DOI: 10.3785/j.issn.1008-973X.2025.03.006
交通工程、土木工程     
深层地基加固数字孪生系统
陆俊辉(),张光发*(),陈田,陆宇
上海电机学院 机械学院,上海 201306
Digital twin system for deep foundation reinforcement construction
Junhui LU(),Guangfa ZHANG*(),Tian CHEN,Yu LU
School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306, China
 全文: PDF(2837 KB)   HTML
摘要:

针对深层地基加固施工过程中数字化程度低、地下作业不可见以及工期不可控的问题,将数字孪生技术引入深层地基加固施工场景中,设计深层地基加固施工数字孪生系统. 该系统结合地基加固区域的地质条件和监控需求,通过模型建立、数据采集与处理以及动态映射完成开发. 模型建立阶段以多维度数据为基础,构建施工过程的数字孪生模型;数据采集与处理阶段通过传感器网络获取实时数据,并对数据进行校正与整合;动态映射阶段将施工数据与模型同步映射,实现地基加固施工过程的全方位数字化监控. 将该系统成功应用于张靖皋长江大桥北航道桥南锚碇深层地基加固工程. 应用结果显示,工程参数全部符合设计要求,其中部分参数远超设计预期,显著提升了施工效率和质量,解决了传统施工中地下作业不可见的问题. 通过对工程参数的实时监控与动态调整,缩短工期,提高深层地基加固施工的可靠性与可控性,全面提升工程项目的数字化水平.

关键词: 数字孪生数字化地基加固监控系统高压旋喷桩    
Abstract:

Digital twin technology was applied to address issues of low digitalization, invisibility of underground operations, and uncontrollable schedules in deep foundation reinforcement. A digital twin system was designed based on geological conditions and monitoring requirements. The system was developed through model establishment, data acquisition, and dynamic mapping. In the model establishment stage, a digital twin model of the construction process was constructed based on multi-dimensional data. In the data acquisition and processing stage, real-time data was obtained through a sensor network, and then corrected and integrated. In the dynamic mapping stage, construction data and the model were synchronously mapped to achieve all-round digital monitoring of the foundation reinforcement construction process. The system was applied to the south anchorage of the Zhang jing-gao Yangtze River Bridge’s north channel bridge. Results showed that all engineering parameters met or exceeded design requirements. Efficiency and quality were improved, and underground operations were visualized. Through real-time monitoring and dynamic adjustment of engineering parameters, the construction period was shortened, the reliability and controllability of deep foundation reinforcement construction were improved, and the digital level of the engineering project was comprehensively enhanced.

Key words: digital twin    digitization    ground reinforcement    monitoring system    high pressure rotary jet pile
收稿日期: 2024-04-07 出版日期: 2025-03-10
CLC:  TU 712  
基金资助: 上海市科委地方院校能力建设三年行动计划(22010501000); 上海多向模锻工程技术研究中心资助项目(20DZ2253200); 上海市临港新片区智能制造产业学院资助项目(B1-0299-21-023).
通讯作者: 张光发     E-mail: 2540450715@qq.com;zhanggf@sdju.edu.cn
作者简介: 陆俊辉(1998—),男,硕士,从事数字孪生技术与地基加固施工研究. orcid.org/0009-0002-0751-5632. E-mail:2540450715@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陆俊辉
张光发
陈田
陆宇

引用本文:

陆俊辉,张光发,陈田,陆宇. 深层地基加固数字孪生系统[J]. 浙江大学学报(工学版), 2025, 59(3): 488-495.

Junhui LU,Guangfa ZHANG,Tian CHEN,Yu LU. Digital twin system for deep foundation reinforcement construction. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 488-495.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.006        https://www.zjujournals.com/eng/CN/Y2025/V59/I3/488

图 1  高压旋喷施工成桩流程
图 2  RJP工法及改进的D-RJP工法
图 3  深层地基加固施工数字孪生系统应用框架
图 4  深层地基加固施工数字孪生平台结构图
图 5  数据传输过程
孪生设备状态显示模型参数
旋喷桩主机位置变化旋喷桩主机模型位置(经纬度、深度)、偏离量
旋喷桩开始模型开始位置位置(经纬度、深度)、速度、成桩后的三维影像图和密度分布图
运转模型旋转和垂直位置变化
结束模型结束位置
水泥料仓开始装满水泥的水泥罐模型水泥体积余量、水泥体积用量
运转水泥下降动画过程
结束水泥体积余量为0的水泥罐模型
表 1  物理层各要素在模拟层的映射机制
图 6  深层地基加固数字孪生系统客户端界面展示
图 7  深层地基加固数字孪生系统运行流程
1 魏茂彬, 李胜伟, 彭云飞 智云监测技术在建筑沉降监测中的应用研究[J]. 建设科技, 2024, (5): 43- 46
WEI Maobin, LI Shengwei, PENG Yunfei, et al Research on application of intelligent cloud monitoring technology in building settlement monitoring[J]. Construction Science and Technology, 2024, (5): 43- 46
2 刘强, 赵宇飞, 杨帆, 等 超深振冲碎石桩施工智能化监控系统研发与应用研究[J]. 水利水电快报, 2021, 42 (12): 65- 71
LIU Qiang, ZHAO Yufei, YANG Fan, et al Research on development and application of intelligent monitoring system for construction of ultra-deep vibro-replacement stone column[J]. Express Water Resources and Hydropower Information, 2021, 42 (12): 65- 71
3 程义, 叶观宝, 戚德健, 等 基于物联网技术的搅拌桩施工全过程远程监测系统应用研究[J]. 勘察科学技术, 2019, (3): 19- 23
CHENG Yi, YE Guanbao, QI Dejian, et al Application and study on remote monitoring system of whole process of mixing pile construction based on Internet of things technique[J]. Site Investigation Science and Technology, 2019, (3): 19- 23
doi: 10.3969/j.issn.1001-3946.2019.03.006
4 陈飞, 金建敏, 柯小环, 等 基于物联网技术的静压法预应力管桩施工全过程监控系统应用研究[J]. 施工技术: 中英文, 2023, 52 (22): 82- 86
CHEN Fei, JIN Jianmin, KE Xiaohuan, et al Application research on the whole process monitoring system of static pressure prestressed pipe pile construction based on internet of things technology[J]. Construction Technology, 2023, 52 (22): 82- 86
5 GRIEVES M, VICKERS J. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems [M]// Transdisciplinary Perspectives on Complex Systems . Berlin: Springer, 2017.
6 GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and U. S. air force vehicles [C]// 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference . Honolulu: AIAA, 2012: 25–28.
7 NEGRI E, FUMAGALLI L, MACCHI M A review of the roles of digital twin in CPS-based production systems[J]. Procedia Manufacturing, 2017, 11: 939- 948
doi: 10.1016/j.promfg.2017.07.198
8 陶飞, 刘蔚然, 张萌, 等 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25 (1): 1- 18
TAO Fei, LIU Weiran, ZHANG Meng, et al Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25 (1): 1- 18
9 刘占省, 邢泽众, 黄春, 等 装配式建筑施工过程数字孪生建模方法[J]. 建筑结构学报, 2021, 42 (7): 213- 222
LIU Zhansheng, XING Zezhong, HUANG Chun, et al Digital twin modeling method for construction process of assembled building[J]. Journal of Building Structures, 2021, 42 (7): 213- 222
10 史国梁, 刘占省, 路德春, 等. 索桁架结构施工误差评估的孪生仿真与模型试验 [J]. 建筑结构学报, 2024, 45(4): 107–119.
SHI Guoliang, LIU Zhansheng, LU Dechun, et al. Twinning simulation and model test for construction error assessment of cable truss structures [J]. Journal of Building Structures , 2024, 45(4): 107–119.
11 刘占省, 刘俊杰, 及炜煜, 等 基于数字孪生的建筑工程交付模型建立及应用研究[J]. 建筑结构学报, 2024, 45 (4): 97- 106
LIU Zhansheng, LIU Junjie, JI Weiyu, et al Research on establishment and application of delivery model of construction engineering based on digital twin[J]. Journal of Building Structures, 2024, 45 (4): 97- 106
12 宫志群, 王永志, 廖少明 基于数字孪生的建设工程项目管理数字化[J]. 土木工程学报, 2024, 57 (7): 106- 128
GONG Zhiqun, WANG Yongzhi, LIAO Shaoming Digitalization of construction engineering project management based on the digital twin[J]. China Civil Engineering Journal, 2024, 57 (7): 106- 128
13 胡晓虎, 川田充, 中西康晴, 等 RJP高压旋喷工法及其在日本的工程应用[J]. 岩土工程学报, 2010, 32 (Suppl.2): 410- 413
HU Xiaohu, CHUAN Tianchong, ZHONGXI Kangqing, et al Application of jet grouting pile method in Japan[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (Suppl.2): 410- 413
14 朱磊 RJP高压旋喷法在深基坑工程中的应用[J]. 施工技术, 2015, 44 (19): 65- 67
ZHU Lei Application of RJP method used in deep foundation excavation[J]. Construction Technology, 2015, 44 (19): 65- 67
15 张海荣 大直径超深双高压旋喷结合定喷桩在深基坑隔水帷幕中的应用[J]. 建筑施工, 2010, 32 (3): 205- 207
ZHANG Hairong Big calibre and super long piles combined with dual high-pressure chemical churning piles and position-injected piles applied to water-stop wall in deep foundation pit[J]. Building Construction, 2010, 32 (3): 205- 207
doi: 10.3969/j.issn.1004-1001.2010.03.012
[1] 林俊杰,朱雅光,刘春潮,刘昊洋. 面向移动作业的腿足机器人数字孪生系统[J]. 浙江大学学报(工学版), 2024, 58(9): 1956-1969.
[2] 赵永胜,赵志勇,李迎,张涛. 基于数字孪生的机身对接精度优化控制方法[J]. 浙江大学学报(工学版), 2023, 57(5): 883-891.
[3] 赵永胜,李瑞祥,牛娜娜,赵志勇. 数字孪生驱动的机身形状控制方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1457-1463.
[4] 冷柏寒,夏唐斌,孙贺,王皓,奚立峰. 面向可重构制造的数字孪生映射建模与监控仿真[J]. 浙江大学学报(工学版), 2022, 56(5): 843-855.
[5] 李琳利,顾复,李浩,顾新建,罗国富,武志强,刚轶金. 仿生视角的数字孪生系统信息安全框架及技术[J]. 浙江大学学报(工学版), 2022, 56(3): 419-435.
[6] 程浙武,童水光,童哲铭,张钦国. 工业锅炉数字化设计与数字孪生综述[J]. 浙江大学学报(工学版), 2021, 55(8): 1518-1528.
[7] 郑守国,张勇德,谢文添,樊虎,王青. 基于数字孪生的飞机总装生产线建模[J]. 浙江大学学报(工学版), 2021, 55(5): 843-854.
[8] 李卓峰, 林伟岸, 朱瑶宏, 边学成, 叶俊能, 高飞, 陈云敏. 坑底加固控制地铁基坑开挖引起土体位移的现场测试与分析[J]. 浙江大学学报(工学版), 2017, 51(8): 1475-1481.
[9] 王青, 余小光, 乔明杰, 赵安安, 程亮, 李江雄, 柯映林. 基于序列二次规划算法的定位器坐标快速标定方法[J]. 浙江大学学报(工学版), 2017, 51(2): 319-327.
[10] 窦亚冬,王青,李江雄 柯映林. 飞机数字化装配系统数据集成技术[J]. 浙江大学学报(工学版), 2015, 49(5): 858-865.
[11] 王青,梁琴,李江雄,柯映林. 飞机数字化装配机翼姿态评价及调整方法[J]. 浙江大学学报(工学版), 2014, 48(7): 1287-1294.
[12] 应征, 王青, 李江雄, 柯映林,孙文博,韩永伟. 飞机数字化装配系统运动数据集成及监控技术[J]. J4, 2013, 47(5): 761-767.
[13] 熊瑞斌,黄浦缙,柯映林. 一种自适应入位固持装置及试验研究[J]. J4, 2010, 44(11): 2100-2107.
[14] 卢科青,王文,汪玮,陈子辰. 基于可变向测头的未知自由曲面数字化测量[J]. J4, 2010, 44(11): 2041-2049.
[15] 夏一行 曲琳 黄轶伦 陈耀武. 嵌入式数字化仪器设备UML应用软件框架研究[J]. J4, 2008, 42(7): 1174-1178.