Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (11): 2259-2268    DOI: 10.3785/j.issn.1008-973X.2025.11.004
机械工程、能源工程     
丝杠旋铣预测建模与自适应优化方法
刘超1,2,3(),丁浩1,郑娟娟1,4,黄绍服1,3,罗祖青1,沈刚1
1. 安徽理工大学 机电工程学院,安徽 淮南 232000
2. 重庆大学 高端装备机械传动全国重点实验室,重庆 400030
3. 安徽理工大学 环境友好材料与职业健康研究院,安徽 芜湖 241003
4. 重庆大学 数学与统计学院,重庆 400030
Predictive modeling and adaptive optimization method for ball screw whirling milling process
Chao LIU1,2,3(),Hao DING1,Juanjuan ZHENG1,4,Shaofu HUANG1,3,Zuqing LUO1,Gang SHEN1
1. School of Mechanical and Electrical Engineering, Anhui University of Science and Technology, Huainan 232000, China
2. State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400030, China
3. Institute ofEnvironment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu 241003, China
4. College of Mathematics and Statistics, Chongqing University, Chongqing 400030, China
 全文: PDF(2792 KB)   HTML
摘要:

针对丝杠旋铣加工参数与各指标之间的高度非线性问题,提出融合改进麻雀搜索算法优化反向传播(ISSA-BP)和非支配排序遗传算法(NSGA-III)的自适应动态优化混合模型. 对比5种改良策略、种群规模及搜索者与警戒者比例对麻雀搜索算法的影响,确定适宜的网络结构,建立4个指标的ISSA-BP预测模型. 通过与其他4种算法的预测性能对比可知,提出的ISSA-BP模型对4个指标的预测相对误差均低于2%,验证了模型的优越性. 将ISSA-BP模型封装嵌入NSGA-III作为适应度预测函数,求解得到帕累托最优解集,为丝杠旋铣加工在提升加工稳定性、保障加工质量方面提供指导.

关键词: 旋风铣削预测建模多目标优化非支配排序遗传算法(NSGA-III)    
Abstract:

An adaptive dynamic optimization hybrid model that combined improved sparrow search algorithm for optimizing backpropagation (ISSA-BP) and non-dominated sorting genetic algorithm--III (NSGA-III) was proposed to address the highly nonlinear problem between machining parameters and various indicators in whirling milling. The effect of five improvement strategies, population size, and the ratio of searchers to vigilantes on the sparrow search algorithm was compared, and an appropriate network structure was determined. Then an ISSA-BP prediction model with four indicators was established. The predictive performance of the proposed ISSA-BP model was compared with four other algorithms. The relative prediction errors for all four indicators were less than 2%, verifying the superiority of the model. The ISSA-BP model was encapsulated and embedded into NSGA-III as a fitness prediction function, and the Pareto optimal solution set was solved, which provided guidance for improving machining stability and ensuring machining quality in screw whirling milling.

Key words: whirling milling    predictive modeling    multi-objective optimization    non-dominated sorting genetic algorithm-III(NSGA-III)
收稿日期: 2024-10-27 出版日期: 2025-10-30
:  TG 62  
基金资助: 国家自然科学基金资助项目(52205321, 52275228, U21A20125);安徽理工大学环境友好材料与职业健康研究院 (芜湖) 资助项目(ALW2021YF06); 安徽理工大学研究生创新基金资助项目(2023CX2077).
作者简介: 刘超(1988—),男,副教授,硕导,从事切削加工动力学的研究. orcid.org/0000-0002-4749-5499. E-mail:liuchaomech@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘超
丁浩
郑娟娟
黄绍服
罗祖青
沈刚

引用本文:

刘超,丁浩,郑娟娟,黄绍服,罗祖青,沈刚. 丝杠旋铣预测建模与自适应优化方法[J]. 浙江大学学报(工学版), 2025, 59(11): 2259-2268.

Chao LIU,Hao DING,Juanjuan ZHENG,Shaofu HUANG,Zuqing LUO,Gang SHEN. Predictive modeling and adaptive optimization method for ball screw whirling milling process. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2259-2268.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.11.004        https://www.zjujournals.com/eng/CN/Y2025/V59/I11/2259

图 1  旋风铣削加工的示意图
图 2  切削力和振动采集过程
图 3  粗糙度和残余应力测量装置
序号Vt/
(m·min?1)
Ma/
mm
NFmax/
N
av/gRa/
nm
σr/
MPa
A1600.0631640.471143.6308
A21000.0631460.441132.8250
A31400.0631540.388107.8400
A41800.0631220.393116.5455
B11400.043750.395117.692
B21400.0631540.388107.8400
B31400.0831930.378126.8370
B41400.1032160.374204.6415
C11400.0621800.359109.8410
C21400.0631540.388107.8400
C31400.0641610.41392.3329
C41400.0661300.49481.7260
表 1  单因素实验方案和结果
序号Vt/
(m·min?1)
Ma/
mm
NFmax / Nav/gRa/
nm
σr/
MPa
1600.0631640.471143.6308
2800.0631480.464142.9235
31000.0631460.441132.8250
41200.0631510.412119.1316
51400.0631540.388107.8400
61600.0631470.378104.9453
71800.0631220.393116.5455
81400.043750.395117.692
91400.0531210.392111.0326
101400.0631540.388107.8400
111400.0731770.383111.8373
121400.0831930.378126.8370
131400.0932050.375156.5306
141400.132160.374204.0415
151400.0621800.359109.8410
161400.062.51590.375112.7325
171400.0631540.388107.8400
181400.063.51600.497.9387
191400.0641610.41392.3329
201400.0651790.44569.5198
211400.0661300.49481.7260
表 2  基于单因素实验的样条插值参数及结果
映射名称映射公式 映射范围
Logistic$ {x_{i+1}} = \mu {x_i} (1 - {x_i}),\mu \in (0,4] $[0,1.0]
Circle$ {x_{i+1}} = \text{mod} [{x_i}+0.2 - 0.5 \sin \;(2{\text{π}} {x_i})/(2{\text{π}}) ,1] $[0,1.0]
Sine$ {x_{i+1}} = \mu \sin\; (\text {π} {x_i}),\mu \in [0,1.0] $[0,1.0]
Singer$ \begin{gathered} {x_{i+1}} = \mu (7.86{x_i} - 23.31x_i^2+28.75x_i^3 - 13.303x_i^4) \\ \mu \in (0.9,1.08) \\ \end{gathered} $[0,1.0]
Cubic$ {x_{i+1}} = \rho (1 - x_i^2) $[0,1.0]
表 3  几种常见的混沌映射
图 4  SSA改进策略的对比
图 5  种群大小对ISSA-BP的影响
图 6  各种搜索者与警戒者比例的模型预测性能
图 7  5种算法在4个指标上的RMSE对比小提琴图
图 8  5种算法模型在4项性能评估标准下的性能比较
图 9  5种算法下R2的比较
算法F/N算法av/g
MAEMSERMSEMAPER2MAEMSERMSEMAPER2
BP8.6263.27.956.280.870BP0.00646.63×10?50.00811.540.952
ISSA-BP1.199.263.040.740.991ISSA-BP0.00033.42×10?60.00180.120.999
PSO-BP3.5537.86.152.490.960PSO-BP0.00181.54×10?50.00390.4690.989
GWO-BP4.3342.66.533.220.950GWO-BP0.00363.20×10?50.00560.570.984
MFO-BP3.8936.26.022.30.964MFO-BP0.00202.61×10?50.00510.480.992
算法Ra/nm算法$\sigma_{\mathrm{r}} $/MPa
MAEMSERMSEMAPER2MAEMSERMSEMAPER2
BP3.0121.174.606.700.880BP33.10986.531.49.280.82
ISSA-BP1.031.681.291.030.997ISSA-BP8.50133.211.541.710.98
PSO-BP2.3513.563.682.000.984PSO-BP17.34429.720.735.810.93
GWO-BP2.8316.284.032.360.975GWO-BP21.46689.626.257.890.89
MFO-BP3.2014.333.794.170.950MFO-BP18.81488.622.16.140.92
表 4  5种算法模型在4个指标上的性能对比
图 10  ISSA-BP-NSGA-III分析的流程图
图 11  Pareto优化前沿图
Vt/
(m·min-1)
Ma/
mm
NFmax/
N
av/
g
Ra/
nm
σr/
MPa
1400.0875.4161.30.450176.8619
1400.0665.489.80.458175.7238
1400.0754.2115.60.406174.3566
116.70.0713.2131.00.428148.6318
1010.0905.1203.220.504172.2598
1010.0905.3193.00.508174.3601
1400.0663.0108.90.388166.8388
130.80.0744.0119.90.425170.7537
123.50.0772.9135.00.413160.1272
114.50.0914.5195.10.499171.1592
97.30.0985.9192.50.470175.4599
134.90.0724.1110.60.417172.0533
116.40.0663.1124.50.424148.3313
127.10.0663.4113.60.416157.7406
1400.0802.9147.10.373206.8339
106.50.0783.0156.60.443137.1200
1050.0803.5185.70.480144.2362
97.60.0983.5240.30.505132.3303
116.80.1003.7232.90.459153.9485
114.50.0853.7178.80.461154.8479
表 5  Pareto解集
1 宋现春, 王笑, 贾鑫鹏, 等 基于滚珠丝杠副滚珠载荷分布的摩擦力矩计算方法研究[J]. 机电工程技术, 2024, 53 (4): 138- 142
SONG Xianchun, WANG Xiao, JIA Xinpeng, et al Research on calculation method of friction moment based on ball load distribution of ball screw pair[J]. Mechanical and Electrical Engineering Technology, 2024, 53 (4): 138- 142
2 李中凯, 孙冉, 邹光宇 平面滚珠丝杠副多结合面建模与动态特性分析[J]. 振动测试与诊断, 2023, 43 (5): 960- 966
LI Zhongkai, SUN Ran, ZOU Guangyu Modeling and dynamic characteristics analysis of multiple joint surfaces in flat ball screw pairs[J]. Journal of Vibration, Measurement and Diagnosis, 2023, 43 (5): 960- 966
3 陈哲钥, 张建业, 吕张成, 等 基于滚珠丝杠传动的机床进给系统建模与分析[J]. 机床与液压, 2023, 51 (13): 166- 171
SUN Zheyue, ZHANG Jianye, LV Zhangcheng, et al Modeling and analysis of machine tool feed system based on ball screw transmission[J]. Machine Tool and Hydraulics, 2023, 51 (13): 166- 171
doi: 10.3969/j.issn.1001-3881.2023.13.027
4 LIU C, HE Y, LI Y F, et al Predicting residual properties of ball screw raceway in whirling milling based on machine learning[J]. Measurement, 2021, 173 (25): 108605
5 SREEJITH P S, NGOI B K A Dry machining: machining of the future[J]. Journal of Materials Processing Technology, 2000, 101 (1): 287- 291
6 薛海鹏, 房磊琦, 蔡飞, 等 AlCrBSiN复合涂层制备及高速干式切削性能[J]. 中国表面工程, 2023, 36 (4): 118- 128
XUE Haipeng, FANG Leiqi, CAI Fei, et al Deposition and high-speed dry cutting performance of AlCrBSiN-coated cutters[J]. China Surface Engineering, 2023, 36 (4): 118- 128
7 王海艳, 周秩同, 武晔, 等 基于斜角切削理论的钛合金螺旋铣孔切削力建模[J]. 中国机械工程, 2023, 34 (2): 142- 147
WANG Haiyan, ZHOU Zhitong, WU Ye, et al Modeling of cutting force for titanium alloy spiral milling holes based on oblique cutting theory[J]. China Mechanical Engineering, 2023, 34 (2): 142- 147
8 ZHENG F Y, ZHANG M G, ZHANG W Q, et al The fundamental roughness model for face-milling spiral bevel gears considering run-outs[J]. International Journal of Mechanical Sciences, 2019, 156 (3): 272- 282
9 GUPTA M K, KORKMAZ M E, SARIKAYA M, et al In-process detection of cutting forces and cutting temperature signals in cryogenic assisted turning of titanium alloys: an analytical approach and experimental study[J]. Mechanical Systems and Signal Processing, 2022, 168 (1): 108772
10 NEMETZ A W, DAVESW, KLUNSNERl T, et al FE temperature and residual stress prediction in milling inserts and correlation with experimentally observed damage mechanisms[J]. Journal of Materials Processing Technology, 2018, 256 (6): 98- 108
11 孙庆贞, 魏学涛, 张涛, 等 运用响应面法的Ti-6Al-4VELI钛合金铣削表面粗糙度预测模型[J]. 机械科学与技术, 2024, 43 (4): 643- 649
SUN Qingzhen, WEI Xuetao, ZHANG Tao, et al Prediction model for surface roughness of Ti-6Al-4V ELI titanium alloy milling using response surface methodology[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43 (4): 643- 649
12 YANG S S, HU W P, ZHAN Z X, et al A novel model considering combined effects of as-built roughness and notch for multiaxial fatigue life prediction of L-PBF Ti6Al4V[J]. Theoretical and Applied Fracture Mechanics, 2024, 131 (3): 104390
13 LIU Y J, YIN Y T, ZHANG S J Multi-objective optimization of high-power fiber laser cutting process using data augmentation-based ANN-Adam model[J]. Optical Fiber Technology, 2024, 87 (6): 103875
14 WEI J C, HE W B, LIN C G, et al Optimizing process parameters of in-situ laser assisted cutting of glass–ceramic by applying hybrid machine learning models[J]. Advanced Engineering Informatics, 2024, 62 (4): 102590
15 JIA S, WANG S, LI S Y, et al Integrated multi-objective optimization of rough and finish cutting parameters in plane milling for sustainable machining considering efficiency, energy, and quality[J]. Journal of Cleaner Production, 2024, 471 (15): 143406
16 DING H, WANG Z C, GUO Y C Multi-objective optimization of fiber laser cutting based on generalized regression neural network and non-dominated sorting genetic algorithm[J]. Infrared Physics and Technology, 2020, 108 (5): 103337
17 SHAH D R, PANCHOLI N, GAJERA H, et al Investigation of cutting temperature, cutting force and surface roughness using multi-objective optimization for turning of Ti-6Al-4 V (ELI)[J]. Materials Today: Proceedings, 2022, 50 (5): 1379- 1388
18 YAN J H, LI L Multi-objective optimization of milling parameters: the trade-offs between energy, production rate and cutting quality[J]. Journal of Cleaner Production, 2013, 52 (1): 462- 471
19 SHRIVASTAVA P K, PANDEY A K Multi-objective optimization of cutting parameters during laser cutting of titanium alloy sheet using hybrid approach of genetic algorithm and multiple regression analysis[J]. Materials Today: Proceedings, 2018, 5 (11): 24710- 24719
doi: 10.1016/j.matpr.2018.10.269
20 XUE J, SHEN B A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science and Control Engineering, 2020, 8 (1): 22- 34
doi: 10.1080/21642583.2019.1708830
21 邬贵昌, 韦文山, 李尚平, 等 基于混沌的多策略优化麻雀算法及应用[J]. 微电子学与计算机, 2022, 39 (12): 21- 30
WU Guichang, WEI Wenshan, LI Shangping, et al Chaos based multi strategy optimization sparrow algorithm and its application[J]. Microelectronics and Computer, 2022, 39 (12): 21- 30
22 FENG H, MA W, YIN C B, et al Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller[J]. Automation in Construction, 2021, 127 (7): 103722
23 LI Z Q, DU Y B, HE G H, et al Parameters optimization for single-track laser cladding based on MPA-SVR and A-NSGA-III[J]. Optics and Laser Technology, 2024, 169 (2): 110069
24 FAHEEM A, HASAN F, KHAN A, et al Parametric optimization of electric discharge machining of Ni Ti based shape memory alloy using NSGA II with TOPSIS55.65[J]. Journal of Materials Research and Technology, 2023, 26 (19): 1306- 1324
[1] 罗亚波,喻少龙,张峰,李存荣. 改进候鸟算法求解可重入混流车间批量流调度[J]. 浙江大学学报(工学版), 2025, 59(8): 1598-1607.
[2] 王昱,马春荣,赵明月. 基于混合策略多目标粒子群的异构无人机协同多任务分配[J]. 浙江大学学报(工学版), 2025, 59(4): 821-831.
[3] 李勇,王跃,柳富强,孙柏青,李恺如. 护工-机器人协作养老情境下的多任务分配框架[J]. 浙江大学学报(工学版), 2025, 59(2): 375-383.
[4] 张盈斐,胡小兵,周航,冯序增. 基于改进的NSGA-II算法的三维扇区自动划设[J]. 浙江大学学报(工学版), 2025, 59(2): 413-422.
[5] 陈海烨,张则强,梁巍,郭磊,段淇耀. 多约束人机协作U型拆卸线问题建模与优化[J]. 浙江大学学报(工学版), 2025, 59(11): 2248-2258.
[6] 郝梦园,张雷克,刘小莲,王雪妮,田雨. 基于人工兔算法的复杂输水系统泵阀联合优化调控[J]. 浙江大学学报(工学版), 2025, 59(10): 2115-2124.
[7] 余廷芳,张艮离,周嘉鹏,汤一村. 超临界CO2布雷顿循环耦合有机闪蒸循环的性能分析及优化[J]. 浙江大学学报(工学版), 2025, 59(1): 130-140.
[8] 李若琼,翁源,李欣. 分数阶磁耦合谐振双向无线电能传输系统参数优化[J]. 浙江大学学报(工学版), 2025, 59(1): 141-151.
[9] 叶倩琳,王万良,王铮. 多目标粒子群优化算法及其应用研究综述[J]. 浙江大学学报(工学版), 2024, 58(6): 1107-1120.
[10] 刘超,黄尊鹏,黄绍服. 考虑材料形变的旋风铣削螺纹工件表面粗糙度建模[J]. 浙江大学学报(工学版), 2024, 58(4): 761-771.
[11] 詹燕,陈洁雅,江伟光,鲁建厦,汤洪涛,宋新禹,许丽丽,刘赛淼. 基于改进NSGA-Ⅱ的多目标车间物料配送方法[J]. 浙江大学学报(工学版), 2024, 58(12): 2510-2519.
[12] 曹晓彦,于敏,周瑾,王运志. 可调旋转式流体阻尼器参数多目标优化设计[J]. 浙江大学学报(工学版), 2023, 57(7): 1439-1449.
[13] 余廷芳,宋凌. 超临界CO2布雷顿循环余热回收系统性能分析与优化[J]. 浙江大学学报(工学版), 2023, 57(2): 404-414.
[14] 王万良,陈忠馗,吴菲,王铮,俞梦娇. 基于个体预测的动态多目标优化算法[J]. 浙江大学学报(工学版), 2023, 57(11): 2133-2146.
[15] 王万良,金雅文,陈嘉诚,李国庆,胡明志,董建杭. 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报(工学版), 2022, 56(3): 531-541.