Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (12): 2510-2519    DOI: 10.3785/j.issn.1008-973X.2024.12.010
计算机技术     
基于改进NSGA-Ⅱ的多目标车间物料配送方法
詹燕(),陈洁雅,江伟光,鲁建厦,汤洪涛,宋新禹,许丽丽,刘赛淼
浙江工业大学 机械工程学院,浙江 杭州 310023
Multi-objective workshop material distribution method based on improved NSGA-
Yan ZHAN(),Jieya CHEN,Weiguang JIANG,Jiansha LU,Hongtao TANG,Xinyu SONG,Lili XU,Saimiao LIU
College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
 全文: PDF(743 KB)   HTML
摘要:

针对车间物料配送效率低的问题,建立以配送路径最短和时间窗惩罚值最小为目标的物料配送多目标优化模型,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的混合优化算法INSGA-Ⅱ. 该算法采用密度峰值聚类(DPC)初始化种群,缩减问题规模;在NSGA-Ⅱ遗传操作阶段,采用差分进化(DE)算法,避免陷入局部最优;通过变异向量的差分操作与部分映射交叉加快迭代速度,同时提高种群多样性. 通过求解不同基准函数与不同规模算例验证算法的有效性,结果表明,与传统NSGA-Ⅱ算法相比,改进算法具有更优帕累托前沿,同时算法结果的均匀性和多样性更好,求解时间更短. 研究结果表明,新算法生成的结果更优;相比NSGA-Ⅱ算法、多目标粒子群算法(MOPSO),生成的总配送距离减少26.65%,总时间窗惩罚减少32.5%,能有效提高车间物料的配送效率.

关键词: 物料配送多目标优化密度峰值聚类非支配排序遗传差分进化    
Abstract:

Addressing the inefficient distribution of materials in workshops, a multi-objective optimization model with the shortest distribution path and the smallest time window penalty value was established. A hybrid optimization algorithm, INSGA-Ⅱ, based on a fast non-dominated sorting genetic algorithm (NSGA-Ⅱ) was proposed. Density peak clustering (DPC) was adopted to initialize the population and reduce the problem size. To avoid falling into local optimums, the differential evolution (DE) algorithm was used in the genetic operation stage of NSGA-Ⅱ. The differential operation of mutation vectors was used with partial mapped crossover to accelerate the iteration speed and improve the population diversity. Different benchmark functions were solved with different sizes of arithmetic cases, and the results showed that the improved algorithm had better Pareto front compared to the traditional NSGA-Ⅱ algorithm. Meanwhile, the results of the proposed algorithm had better uniformity and diversity, and the solution time was shorter. Experimental results showed that the proposed algorithm generated , compared with the NSGA-Ⅱ and the multi-objective particle swarm optimization (MOPSO), the total distribution distance could be reduced by up to 26.65% and the total time window penalty could be reduced by up to 32.5%. The new method can effectively improve the distribution efficiency of workshop material.

Key words: material distribution    multi-objective optimization    density peak clustering    non-dominated sorting genetic algorithm    differential evolution
收稿日期: 2023-11-07 出版日期: 2024-11-25
CLC:  TP 391.9  
基金资助: 浙江省尖兵研发攻关计划资助项目(2023C01063).
作者简介: 詹燕(1976—),女,副教授,从事图像处理及智能制造研究. orcid.org/0000-0002-6861-8005. E-mail:yzhan@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
詹燕
陈洁雅
江伟光
鲁建厦
汤洪涛
宋新禹
许丽丽
刘赛淼

引用本文:

詹燕,陈洁雅,江伟光,鲁建厦,汤洪涛,宋新禹,许丽丽,刘赛淼. 基于改进NSGA-Ⅱ的多目标车间物料配送方法[J]. 浙江大学学报(工学版), 2024, 58(12): 2510-2519.

Yan ZHAN,Jieya CHEN,Weiguang JIANG,Jiansha LU,Hongtao TANG,Xinyu SONG,Lili XU,Saimiao LIU. Multi-objective workshop material distribution method based on improved NSGA-. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2510-2519.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.12.010        https://www.zjujournals.com/eng/CN/Y2024/V58/I12/2510

图 1  车间布局图
图 2  DPC初始化种群图
图 3  变异操作图
图 4  交叉操作图
图 5  INSGA-Ⅱ流程图
图 6  不同基准函数下算法的帕累托前沿
基准函数HVC?A[(C?A)/A]/%C?B[(C?B)/B]/%
NSGA-ⅡMOPSOINSGA-Ⅱ
ZDT16.857.868.181.3316.260.323.91
ZDT26.087.177.421.3418.060.253.37
ZDT36.619.529.743.1332.140.222.26
ZDT66.007.127.161.1615.970.040.56
表 1  不同基准函数下3种算法的HV
指标t1/st2/st3/st4/s
NSGA-ⅡMOPSO INSGA-ⅡNSGA-ⅡMOPSO INSGA-ⅡNSGA-ⅡMOPSO INSGA-ⅡNSGA-ⅡMOPSO INSGA-Ⅱ
均值17.1114.058.9617.3115.604.0711.4112.326.2915.5210.873.54
标准差1.130.770.564.531.230.100.480.700.091.680.540.09
标准误差0.360.240.181.430.390.030.150.220.030.530.170.03
表 2  不同基准函数下3种算法的求解时间
任务规模指标${Z_1}$/mD?E[(D?E)/D]/%${Z_2}$/sD?E[(D?E)/D]/%
NSGA-ⅡINSGA-ⅡNSGA-ⅡINSGA-Ⅱ
25均值965.20878.1087.109.029962.508906.701055.8010.60
标准差25.8117.867.9530.81434.40270.05164.3437.83
标准误差8.165.652.5130.81137.3785.4051.9737.83
50均值2168.002077.0091.004.2049825.0047339.002486.004.99
标准差32.1024.487.6223.731488.711082.50406.2127.29
标准误差10.157.742.4123.73470.77342.32128.4627.29
表 3  不同任务规模下算法的求解结果
图 7  数据集R101的DPC聚类中心与聚类结果图
图 8  不同批次下算法的帕累托前沿
批次指标NSGA-ⅡMOPSOINSGA-Ⅱ
${Z_1}$/m${Z_2}$/s${Z_1}$/m${Z_2}$/s${Z_1}$/m${Z_2}$/s
1均值643.205398.25736.606364.95540.304296.25
标准差22.82393.6133.69510.2311.50177.07
标准误差7.21124.4710.65161.353.6455.99
2均值428.202126.75432.102201.15348.301562.90
标准差15.92162.2015.56154.419.0481.68
标准误差5.0351.294.9248.832.8625.83
3均值265.10867.10273.00828.45233.60605.55
标准差11.7377.7611.6447.999.7432.81
标准误差3.7124.593.6815.183.0810.37
表 4  3批次下3种算法结果
1 LANZA G, PASSACANTANDO M, SCUTELLA M G Sequencing and routing in a large warehouse with high degree of product rotation[J]. Flexible Services and Manufacturing Journal, 2023, 35: 1206- 1255
doi: 10.1007/s10696-022-09463-w
2 FERREIRA K M, QUEIROZ T A D A simulated annealing based heuristic for a location-routing problem with two-dimensional loading constraints[J]. Applied Soft Computing, 2022, 118: 108443
doi: 10.1016/j.asoc.2022.108443
3 OSABA E, YANG X S, DIAZ F, et al A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy[J]. Soft Computing, 2017, 21 (18): 5295- 5308
doi: 10.1007/s00500-016-2114-1
4 罗亮, 陈慧璇, 吴张, 等 交通与天气状况双重作用下生鲜农产品冷链配送的VRPTW[J]. 系统工程, 2022, 40 (6): 67- 75
LUO Liang, CHEN Huixuan, WU Zhang, et al Vehicle routes planning of cold chain distribution for fresh agricultural product based on the dual functions of the traffic and weather conditions[J]. Systems Engineering, 2022, 40 (6): 67- 75
5 GHANNADPOUR S F, ZARRABI A Multi-objective heterogeneous vehicle routing and scheduling problem with energy minimizing[J]. Swarm and Evolutionary Computation, 2019, 44: 728- 747
doi: 10.1016/j.swevo.2018.08.012
6 ZHANG D F, CAI S F, YE F R, et al A hybrid algorithm for a vehicle routing problem with realistic constraints[J]. Information Sciences, 2017, 394: 167- 182
7 AKPINAR S Hybrid large neighbourhood search algorithm for capacitated vehicle routing problem[J]. Expert Systems with Applications, 2016, 61: 28- 38
doi: 10.1016/j.eswa.2016.05.023
8 FREY C M M, JUNGWIRTH A, FERY M, et al The vehicle routing problem with time windows and flexible delivery locations[J]. European Journal of Operational Research, 2023, 308 (3): 1142- 1159
doi: 10.1016/j.ejor.2022.11.029
9 KUO R J, LUTHFIANSYAH M F, MASRUROH N A, et al Application of improved multi-objective particle swarm optimization algorithm to solve disruption for the two-stage vehicle routing problem with time windows[J]. Expert Systems with Applications, 2023, 225: 120009
doi: 10.1016/j.eswa.2023.120009
10 ZHU X Y, JIANG L L, XIAO Y M Study on the optimization of the material distribution path in an electronic assembly manufacturing company workshop based on a Genetic Algorithm considering carbon Emissions[J]. Processes, 2023, 11 (5): 1500
doi: 10.3390/pr11051500
11 WU C, XIAO Y M, ZHU X Y, et al Study on multi-objective optimization of logistics distribution paths in smart manufacturing workshops based on time tolerance and low carbon emissions[J]. Processes, 2023, 11 (6): 1730
doi: 10.3390/pr11061730
12 SRIVASTAVA G, SINGH A, MALLIPEDDI R NSGA-Ⅱ with objective-specific variation operators for multi objective vehicle routing problem with time windows[J]. Expert Systems with Applications, 2021, 176: 114779
doi: 10.1016/j.eswa.2021.114779
13 YIN N Multiobjective optimization for vehicle routing optimization problem in low-carbon intelligent transportation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 24 (11): 13161- 13170
14 STORN R, PRICE K Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11: 341- 359
doi: 10.1023/A:1008202821328
15 LIU M, YANG X N, CHU F, et al Energy-oriented bi-objective optimization for the tempered glass scheduling[J]. International Journal of Management Science, 2020, 90: 101995
16 STAMPFLI J A, ONG B H Y, OLSEN D G, et al Multi objective evolutionary optimization for multi-period heat exchanger network retrofit[J]. Energy, 2023, 281: 128175
doi: 10.1016/j.energy.2023.128175
17 XUAN H, LI W T, LI B An artificial immune differential evolution algorithm for scheduling a distributed heterogeneous flexible flowshop[J]. Applied Soft Computing, 2023, 145: 110563
doi: 10.1016/j.asoc.2023.110563
18 ZHANG G H, LIU B, WANG L, et al Distributed co-evolutionary memetic algorithm for distributed hybrid differentiation flowshop scheduling problem[J]. IEEE Transactions on Evolutionary Computation, 2022, 26 (5): 1043- 1057
doi: 10.1109/TEVC.2022.3150771
19 ZHANG G H, MA X J, WANG L, et al Elite archive-assisted adaptive memetic algorithm for a realistic hybrid differentiation flowshop scheduling problem[J]. IEEE Transactions on Evolutionary Computation, 2022, 26 (1): 100- 114
doi: 10.1109/TEVC.2021.3094542
20 XUE L, WANG X L A multi-objective discrete differential evolution algorithm for energy-efficient two-stage flow shop scheduling under time-of-use electricity tariffs[J]. Applied Soft Computing, 2023, 133: 109946
doi: 10.1016/j.asoc.2022.109946
21 GU Z Q, ZHU Y, WANG Y, et al Applying artificial bee colony algorithm to the multi-depot vehicle routing problem[J]. Software: Practice and Experience, 2022, 52 (3): 756- 771
doi: 10.1002/spe.2838
22 LO S C, CHUANG Y L Vehicle routing optimization with cross-docking based on an artificial immune system in logistics management[J]. Mathematics, 2023, 11 (4): 811
doi: 10.3390/math11040811
23 BARLETTA C, GARN W, TURNER C, et al Hybrid fleet capacitated vehicle routing problem with flexible monte-carlo tree search[J]. International Journal of Systems Science-Operations and Logistics, 2023, 10 (1): 2102265
doi: 10.1080/23302674.2022.2102265
24 WANG Y, RAN L Y, GUAN X Y, et al Collaborative multicenter vehicle routing problem with time windows and mixed deliveries and pickups[J]. Expert Systems with Applications, 2022, 197: 116690
doi: 10.1016/j.eswa.2022.116690
25 RODRIGUEZ A, LAIO A Clustering by fast search and find of density peaks[J]. Science, 2014, 344 (6191): 1492- 1496
doi: 10.1126/science.1242072
26 吴斌, 宋琰, 程晶, 等 基于密度峰值聚类的VRPTW问题研究[J]. 工业工程, 2020, 23 (5): 58- 66
WU Bin, SONG Yan, CHENG Jing, et al A research on vehicle routing problems with time windows based on density peak clustering[J]. Industrial Engineering, 2020, 23 (5): 58- 66
doi: 10.3969/j.issn.1007-7375.2020.05.008
[1] 朱云辰,程明骏,郑昕文,岑沛立,郗祥硕,黄杉,华晨,黄海. 基于优化第三代非支配排序遗传算法的城市应急设施模糊选址[J]. 浙江大学学报(工学版), 2024, 58(9): 1832-1843.
[2] 叶倩琳,王万良,王铮. 多目标粒子群优化算法及其应用研究综述[J]. 浙江大学学报(工学版), 2024, 58(6): 1107-1120.
[3] 刘宇情,王丽珍,杨培忠,朴丽莎. 基于网格空间团的多级同位模式挖掘方法[J]. 浙江大学学报(工学版), 2024, 58(5): 918-930.
[4] 申自浩,唐雨雨,王辉,刘沛骞,刘琨. 基于聚类和深度学习的车联网轨迹隐私保护机制[J]. 浙江大学学报(工学版), 2024, 58(1): 20-28.
[5] 曹晓彦,于敏,周瑾,王运志. 可调旋转式流体阻尼器参数多目标优化设计[J]. 浙江大学学报(工学版), 2023, 57(7): 1439-1449.
[6] 李煌,葛红娟,马莹,王永帅. 基于超平面NSGA-II的双输入双降压逆变器系统参数优化设计[J]. 浙江大学学报(工学版), 2023, 57(3): 606-615.
[7] 余廷芳,宋凌. 超临界CO2布雷顿循环余热回收系统性能分析与优化[J]. 浙江大学学报(工学版), 2023, 57(2): 404-414.
[8] 王万良,陈忠馗,吴菲,王铮,俞梦娇. 基于个体预测的动态多目标优化算法[J]. 浙江大学学报(工学版), 2023, 57(11): 2133-2146.
[9] 王万良,金雅文,陈嘉诚,李国庆,胡明志,董建杭. 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报(工学版), 2022, 56(3): 531-541.
[10] 徐钧恒,杨晓钧,李兵. 基于交叉簧片式铰链的变弯度机翼机构设计[J]. 浙江大学学报(工学版), 2022, 56(3): 444-451, 509.
[11] 邓齐林,鲁娟,陈勇辉,冯健,廖小平,马俊燕. 基于深度强化学习的数控铣削加工参数优化方法[J]. 浙江大学学报(工学版), 2022, 56(11): 2145-2155.
[12] 陈俊杰,李洪均,曹张华. 性能感知的核心网控制面资源分配算法[J]. 浙江大学学报(工学版), 2021, 55(9): 1782-1787.
[13] 朱宝强,王述红,张泽,王鹏宇,董福瑞. 基于时间序列与DEGWO-SVR模型的隧道变形预测方法[J]. 浙江大学学报(工学版), 2021, 55(12): 2275-2285.
[14] 李笑竹,王维庆. 区域综合能源系统两阶段鲁棒博弈优化调度[J]. 浙江大学学报(工学版), 2021, 55(1): 177-188.
[15] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705.