Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (2): 404-414    DOI: 10.3785/j.issn.1008-973X.2023.02.019
机械与能源工程     
超临界CO2布雷顿循环余热回收系统性能分析与优化
余廷芳(),宋凌
南昌大学 先进制造学院,江西 南昌 330031
Performance analysis and optimization of supercritical CO2 Brayton cycle waste heat recovery system
Ting-fang YU(),Ling SONG
School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
 全文: PDF(1361 KB)   HTML
摘要:

为了经济高效地回收超临界CO2布雷顿循环(SCBC)的余热,分别采用卡琳娜循环(KC)和有机朗肯循环(ORC)作为底循环,设计了SCBC/KC及SCBC/ORC这2种系统方案. 对2种方案系统进行参数分析并利用NSGA-Ⅱ多目标遗传算法对联合循环系统进行多目标优化计算,将优化结果与SCBC系统性能进行比较,突出联合循环系统的性能优势. 参数分析结果表明:2种联合循环系统热力性能均存在最佳压比;升高底循环膨胀比有助于提升系统热力性能;提高底循环涡轮机进口温度有助于改善系统?经济性能. 对比结果表明:优化后的SCBC/KC系统热效率和?效率较优化前SCBC系统分别升高了9.27%和8.69%,?经济成本仅升高了0.92%;SCBC/ORC系统热效率和?效率较优化前SCBC系统分别升高10.73%和10.08%,?经济成本升高了1.87%. 通过比较分析可知,SCBC/KC系统更经济,而SCBC/ORC系统更节能.

关键词: 超临界CO2布雷顿循环?经济有机朗肯循环卡琳娜循环余热回收技术性能比较多目标优化    
Abstract:

The Kalina cycle (KC) and the organic Rankine cycle (ORC) were used and modeled as the bottom cycles, to economically and efficiently recover the waste heat of the supercritical carbon dioxide Brayton cycle (SCBC). Parametric analysis was conducted and the NSGA-II multi-objective genetic algorithm was performed for these combined systems to optimize the parameters. The optimization results were compared with the SCBC system performance to display the benefits of combined cycles. Parametric analysis results showed that there was an optimal pressure ratio for the thermodynamic performances of both integrated cycle schemes. The thermodynamic performances of the two schemes were improved by raising the turbo expansion ratio of bottom cycles, and the exergoeconomic performances of the systems were promoted by upping the inlet temperature of the bottom cycle turbine. Comparison results showed that the optimized SCBC/KC system’s thermal efficiency and exergy efficiency increased by 9.27% and 8.69% respectively compared with that of the pre-optimized SCBC system, and its exergoeconomic cost increased by 0.92%. The thermal efficiency and exergy efficiency of SCBC/ORC system increased by 10.73% and 10.08% respectively, and the exergoeconomic cost increased by 1.87%. Comparative analysis showed that the SCBC/KC system was more exergy economical, while SCBC/ORC system was more energy efficient.

Key words: supercritical carbon dioxide Brayton cycle    exergy economics    organic Rankine cycle    Kalina cycle    waste heat recovery technology    performance comparison    multi-objective optimization
收稿日期: 2022-06-24 出版日期: 2023-02-28
CLC:  TK 11  
基金资助: 国家自然科学基金资助项目(22068024);江西省重点研发计划资助项目(2017ACG70012)
作者简介: 余廷芳(1974—),男,教授,硕导,从事新能源发电系统性能分析及优化研究. orcid.org/0000-0003-0313-4955. E-mail: yutingfang@ncu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
余廷芳
宋凌

引用本文:

余廷芳,宋凌. 超临界CO2布雷顿循环余热回收系统性能分析与优化[J]. 浙江大学学报(工学版), 2023, 57(2): 404-414.

Ting-fang YU,Ling SONG. Performance analysis and optimization of supercritical CO2 Brayton cycle waste heat recovery system. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 404-414.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.02.019        https://www.zjujournals.com/eng/CN/Y2023/V57/I2/404

图 1  超临界CO2 SCBC/KC联合循环系统示意图
图 2  超临界CO2 SCBC/ORC联合循环系统示意图
图 3  顶循环SCBC和底循环KC及ORC各循环温熵图
部件 能量守恒方程 ?守恒方程
吸热器 ${\varPhi_{ {\text{ER} } } } = {q_{m,{\text{s} } } }({h_{\text{5} } } - {h_{\text{4} } })$ ${E_{\text{4} } }+{E_{{\text{q, ER} } } } = {E_{\text{5} } }+{E_{ {\text{d,ER} } } }$
透平 ${P_{\text{T} } } = {q_{m,{\text{s} } } }({h_{\text{5} } } - {h_{\text{6} } })$ ${E_{\text{5} } } = {E_{\text{6} } }+{P_{\text{T} } }+{E_{ {\text{d,T} } } }$
主压缩机 ${P_{ {\text{MC} } } } = ({q_{m,{\text{s} } } } - {q_{m,{\text{r} } } })({h_{\text{2} } } - {h_{\text{1} } })$ ${E_{\text{1} } }+{P_{ {\text{MC} } } } = {E_{\text{2} } }+{E_{ {\text{d,MC} } } }$
再压缩机 ${P_{ {\text{RC} } } } = {q_{m,{\text{r} } } }({h_{\text{3} } } - {h_{\text{8} } })$ ${E_{\text{8} } }+{P_{ {\text{RC} } } } = {E_{\text{3} } }+{E_{ {\text{d,RC} } } }$
高温回热器 $ {q_{m,{\text{s}}}}({h_{\text{6}}} - {h_{\text{7}}}) = {q_{m,{\text{s}}}}({h_{\text{4}}} - {h_{\text{3}}}) $ $ {E_{\text{6}}}+{E_{\text{3}}} = {E_{\text{7}}}+{E_{\text{4}}}+{E_{{\text{d,HTR}}}} $
低温回热器 $ {q_{m,{\text{s}}}}({h_{\text{7}}} - {h_{\text{8}}}) = ({q_{m,{\text{s}}}} - {q_{m,{\text{r}}}})({h_{\text{3}}} - {h_{\text{2}}}) $ $ {E_{\text{7}}}+{E_{\text{2}}} = {E_{\text{8}}}+{E_{\text{3}}}+{E_{{\text{d,LTR}}}} $
蒸发器 $ ({q_{m,{\text{s}}}} - {q_{m,{\text{r}}}})({h_{\text{8}}} - {h_{\text{9}}}) = {q_{m,{\text{v}}}}{h_{{\text{01}}}}+{q_{m,{\text{l}}}}{h_{{\text{03}}}} - {q_{m,{\text{k}}}}{h_{{\text{08}}}} $ $ {E_{\text{8}}}+{E_{{\text{08}}}} = {E_{\text{9}}}+{E_{{\text{01}}}}+{E_{{\text{03}}}}+{E_{{\text{d,GK}}}} $
涡轮机 ${P_{ {\text{TK} } } } = {q_{m,{\text{k} } } }({h_{ {\text{01} } } } - {h_{ {\text{02} } } })$ ${E_{ {\text{01} } } } = {E_{ {\text{02} } } }+{P_{ {\text{TK} } } }+{E_{ {\text{d,TK} } } }$
预热器 $ {q_{m,{\text{l}}}}({h_{{\text{03}}}} - {h_{{\text{04}}}}) = {q_{m,{\text{k}}}}({h_{{\text{08}}}} - {h_{{\text{07}}}}) $ $ {E_{{\text{03}}}}+{E_{{\text{07}}}} = {E_{{\text{08}}}}+{E_{{\text{04}}}}+{E_{{\text{d,PHK}}}} $
节流阀 $ {q_{m,{\text{l}}}}{h_{{\text{04v}}}} = {q_{m,{\text{l}}}}{h_{{\text{04a}}}} $ $ {E_{{\text{04}}}} = {E_{{\text{04v}}}}+{E_{{\text{d,VK}}}} $
混合器 $ {q_{m,{\text{v}}}}{h_{{\text{02}}}}+{q_{m,{\text{l}}}}{h_{{\text{04v}}}} = {q_{m,{\text{k}}}}{h_{{\text{05}}}} $ $ {E_{{\text{02}}}}+{E_{{\text{04v}}}} = {E_{{\text{05}}}}+{E_{{\text{d,MK}}}} $
次冷却器 ${\varPhi_{ {\text{CK} } } } = {q_{m,{\text{k} } } }({h_{ {\text{05} } } } - {h_{ {\text{06} } } })$ ${E_{ {\text{05} } } } = {E_{ {\text{06} } } }+{E_{ {\text{q,CK} } } }+{E_{ {\text{d,CK} } } }$
${P_{ {\text{PK} } } } = {q_{m,{\text{k} } } }({h_{ {\text{07} } } } - {h_{ {\text{06} } } })$ ${E_{ {\text{06} } } }+{P_{ {\text{PK} } } } = {E_{ {\text{07} } } }+{E_{ {\text{d,PK} } } }$
主冷却器 ${\varPhi_{ {\text{CS} } } } = ({q_{m,{\text{s} } } } - {q_{m,{\text{r} } } })({h_{\text{9} } } - {h_{\text{1} } })$ ${E_{\text{9} } } = {E_{\text{1} } }+{E_{ {\text{q,CS} } } }+{E_{ {\text{d,CS} } } }$
表 1  SCBC/KC系统各部件能量守恒及㶲守恒方程
部件 能量守恒方程 ?守恒方程
吸热器 ${\varPhi_{ {\text{ER} } } } = {q_{m,{\text{s} } } }({h_{\text{5} } } - {h_{\text{4} } })$ ${E_{\text{4} } }+{E_{\text{q, ER} } } = {E_{\text{5} } }+{E_{ {\text{d,ER} } } }$
透平 $ {P_{\text{T}}} = {q_{m,{\text{s}}}}({h_{\text{5}}} - {h_{\text{6}}}) $ $ {E_{\text{5}}} = {E_{\text{6}}}+{P_{\text{T}}}+{E_{{\text{d,T}}}} $
主压缩机 $ {P_{{\text{MC}}}} = ({q_{m,{\text{s}}}} - {q_{m,{\text{r}}}})({h_{\text{2}}} - {h_{\text{1}}}) $ $ {E_{\text{1}}}+{P_{{\text{MC}}}} = {E_{\text{2}}}+{E_{{\text{d,MC}}}} $
再压缩机 $ {P_{{\text{RC}}}} = {q_{m,{\text{r}}}}({h_{\text{3}}} - {h_{\text{8}}}) $ $ {E_{\text{8}}}+{P_{{\text{RC}}}} = {E_{\text{3}}}+{E_{{\text{d,RC}}}} $
高温回热器 $ {q_{m,{\text{s}}}}({h_{\text{6}}} - {h_{\text{7}}}) = {q_{m,{\text{s}}}}({h_{\text{4}}} - {h_{\text{3}}}) $ $ {E_{\text{6}}}+{E_{\text{3}}} = {E_{\text{7}}}+{E_{\text{4}}}+{E_{{\text{d,HTR}}}} $
低温回热器 $ {q_{m,{\text{s}}}}({h_{\text{7}}} - {h_{\text{8}}}) = ({q_{m,{\text{s}}}} - {q_{m,{\text{r}}}})({h_{\text{3}}} - {h_{\text{2}}}) $ $ {E_{\text{7}}}+{E_{\text{2}}} = {E_{\text{8}}}+{E_{\text{3}}}+{E_{{\text{d,LTR}}}} $
蒸发器 $ ({q_{m,{\text{s}}}} - {q_{m,{\text{r}}}})({h_{\text{8}}} - {h_{\text{9}}}) = {q_{m,{\text{o}}}}({h_{{\text{09}}}} - {h_{{\text{012}}}}) $ $ {E_{\text{8}}}+{E_{{\text{012}}}} = {E_{\text{9}}}+{E_{09}}+{E_{{\text{d,GO}}}} $
涡轮机 $ {P_{{\text{TO}}}} = {q_{m,{\text{o}}}}({h_{{\text{09}}}} - {h_{{\text{010}}}}) $ $ {E_{{\text{09}}}} = {E_{{\text{010}}}}+{P_{{\text{TO}}}}+{E_{{\text{d,TO}}}} $
次冷却器 ${\varPhi_{ {\text{CO} } } } = {q_{m,{\text{o} } } }({h_{ {\text{010} } } } - {h_{ {\text{011} } } })$ ${E_{ {\text{010} } } } = {E_{ {\text{011} } } }+{E_{ {\text{q,CO} } } }+{E_{ {\text{d,CO} } } }$
$ {P_{{\text{PO}}}} = {q_{m,{\text{o}}}}({h_{{\text{012}}}} - {h_{{\text{011}}}}) $ $ {E_{{\text{011}}}}+{P_{{\text{PO}}}} = {E_{{\text{012}}}}+{E_{{\text{d,PO}}}} $
主冷却器 ${\varPhi_{ {\text{CS} } } } = ({q_{m,{\text{s} } } } - {q_{m,{\text{r} } } })({h_{\text{9} } } - {h_{\text{1} } })$ ${E_{\text{9} } } = {E_{\text{1} } }+{E_{ {\text{q,CS} } } }+{E_{ {\text{d,CS} } } }$
表 2  SCBC/ORC系统各部件能量守恒及㶲守恒方程
部件 ?经济守恒方程
吸热器 $ {C_{\text{4}}}+{C_{\text{q}}}+{Z_{{\text{ER}}}} = {C_{\text{5}}} $
透平 $ {C_{\text{5}}}+{Z_{\text{T}}} = {C_{\text{6}}}+{C_{\text{W}}}_{{\text{,T}}} $
主压缩机 $ {C_{\text{1}}}+{C_{\text{W}}}_{{\text{,MC}}}+{Z_{{\text{MC}}}} = {C_{\text{2}}} $
再压缩机 $ {C_{\text{8}}}+{C_{\text{W}}}_{{\text{,RC}}}+{Z_{{\text{RC}}}} = {C_{\text{3}}} $
高温回热器 $ {C_{\text{6}}}+{C_{\text{3}}}+{Z_{{\text{HTR}}}} = {C_{\text{7}}}+{C_{\text{4}}} $
低温回热器 $ {C_{\text{7}}}+{C_{\text{2}}}+{Z_{{\text{LTR}}}} = {C_{\text{8}}}+{C_{\text{3}}} $
蒸发器 $ {C_{\text{8}}}+{C_{{\text{08}}}}+{Z_{{\text{GK}}}} = {C_{\text{9}}}+{C_{{\text{01}}}}+{C_{{\text{03}}}} $
涡轮机 $ {C_{{\text{01}}}}+{Z_{{\text{TK}}}} = {C_{{\text{02}}}}+{C_{\text{W}}}_{{\text{,TK}}} $
预热器 $ {C_{{\text{03}}}}+{C_{{\text{07}}}}+{Z_{{\text{PHK}}}} = {C_{{\text{08}}}}+{C_{{\text{04}}}} $
节流阀 $ {C_{{\text{04}}}}+{Z_{{\text{VK}}}} = {C_{{\text{04v}}}} $
混合器 $ {C_{{\text{02}}}}+{C_{{\text{04v}}}}+{Z_{{\text{MK}}}} = {C_{{\text{05}}}} $
次冷却器 ${C_{ {\text{05} } } }+{Z_{ {\text{CK} } } } = {C_{ {\text{06} } } }+{C_{ {\text{q,CK} } } }$
$ {C_{{\text{06}}}}+{C_{\text{W}}}_{{\text{,PK}}}+{Z_{{\text{PK}}}} = {C_{{\text{07}}}} $
主冷却器 $ {C_{\text{9}}}+{Z_{{\text{CS}}}} = {C_{\text{1}}}+{C_{{\text{Q,CS}}}} $
表 3  SCBC/KC系统各部㶲经济守恒方程
部件 ?经济守恒方程
吸热器 $ {C_{\text{4}}}+{C_{\text{q}}}+{Z_{{\text{ER}}}} = {C_{\text{5}}} $
透平 $ {C_{\text{5}}}+{Z_{\text{T}}} = {C_{\text{6}}}+{C_{\text{W}}}_{{\text{,T}}} $
主压缩机 $ {C_{\text{1}}}+{C_{\text{W}}}_{{\text{,MC}}}+{Z_{{\text{MC}}}} = {C_{\text{2}}} $
再压缩机 $ {C_{\text{8}}}+{C_{\text{W}}}_{{\text{,RC}}}+{Z_{{\text{RC}}}} = {C_{\text{3}}} $
高温回热器 $ {C_{\text{6}}}+{C_{\text{3}}}+{Z_{{\text{HTR}}}} = {C_{\text{7}}}+{C_{\text{4}}} $
低温回热器 $ {C_{\text{7}}}+{C_{\text{2}}}+{Z_{{\text{LTR}}}} = {C_{\text{8}}}+{C_{\text{3}}} $
蒸发器 $ {C_{\text{8}}}+{C_{{\text{012}}}}+{Z_{{\text{GO}}}} = {C_{\text{9}}}+{C_{{\text{09}}}} $
涡轮机 $ {C_{{\text{09}}}}+{Z_{{\text{TO}}}} = {C_{{\text{010}}}}+{C_{\text{W}}}_{{\text{,TO}}} $
次冷却器 ${C_{ {\text{010} } } }+{Z_{ {\text{CO} } } } = {C_{ {\text{011} } } }+{C_{ {\text{q,CO} } } }$
$ {C_{{\text{011}}}}+{C_{\text{W}}}_{{\text{,PO}}}+{Z_{{\text{PO}}}} = {C_{{\text{012}}}} $
主冷却器 ${C_{\text{9} } }+{Z_{ {\text{CS} } } } = {C_{\text{1} } }+{C_{ {\text{q,CS} } } }$
表 4  SCBC/ORC系统各部㶲经济守恒方程
图 4  SCBC/KC及SCBC/ORC系统程序设计图
循环 设定参数 不同工况 ηtr/% ηt/% Δ/%
KC[4] wk=0.5,
p05=681 kPa
θw=100 ℃,pg=1 767 kPa 6.60 6.41 2.88
θw=120 ℃,pg=2 411 kPa 8.87 8.80 0.79
θw=140 ℃,pg=3 161 kPa 10.05 10.64 5.87
ORC[19] R245fa θw=119.80 ℃,p010=178.00 kPa 13.68 13.63 0.37
R601 θw=125.50 ℃,p010=82.00 kPa 14.59 14.57 0.14
SCBC[4] PR=3,
p1=7 400 kPa,
θ5=550 ℃
39.61 39.60 0.03
SCBC/KC[4] wk=0.5,
θw=120 ℃,pg=1 200 kPa,
p05=410 kPa
41.29 41.26 0.07
表 5  SCBC和SCBC/KC及底循环KC和ORC模型验证
循环参数 数值 循环参数 数值
p1/kPa 7400 pr 3
θ1/ 35 ηT TK 0.9
θ5/ 550 ηC 0.85
PR 3 ηTO 0.8
ΦER/MW 600 ηHηL 0.86
wk 0.45 cQ/($·MW?1·h?1) 7.4
θw/ 120 CI,p/CI,o[19] 1.26
pg/kPa 1500
表 6  SCBC/KC及SCBC/ORC联合循环系统设定参数值[4]
决策变量 设定边界范围
θ5/ 500~600
PR 2.2~4.0
θw/ 100~130
pr 2.2~4.0
表 7  多目标优化决策变量边界范围
图 5  SCBC/KC和SCBC/ORC联合循环系统热力性能及循环输出功率随顶循环压比的变化
图 6  SCBC/KC和SCBC/ORC联合循环系统单位㶲成本随顶循环压比的变化
图 7  SCBC/KC和SCBC/ORC联合循环系统热力性能随底循环膨胀比的变化
图 8  SCBC/KC和SCBC/ORC联合循环系统单位㶲成本随底循环膨胀比的变化
图 9  SCBC/KC和SCBC/ORC联合循环系统多目标参数优化Pareto前沿集
系统 SCBC/KC SCBC/ORC
PR 3.34 3.27
θ5 / 593.93 599.85
θw / 128.97 127.76
pr 3.39 3.37
ηt/% 43.27 43.85
ηe/% 64.51 65.33
c /($·GJ?1) 10.82 10.92
表 8  SCBC/KC和SCBC/ORC联合循环系统参数多目标优化结果
状态点 p/kPa θ / h /(kJ·kg?1) s/(kJ·kg?1·K?1) e/(kJ·kg?1) qm /(kg·s?1)
1 7400.00 35.00 402.40 1.66 200.84 1931.28
2 24716.00 123.33 454.58 1.68 247.39 1931.28
3 24716.00 286.70 701.68 2.21 344.94 2646.26
4 24716.00 412.52 860.45 2.47 431.27 2646.26
5 24716.00 593.93 1087.18 2.76 575.00 2646.26
6 7400.00 447.25 923.27 2.79 403.85 2646.26
7 7400.00 309.18 764.49 2.54 314.27 2646.26
8 7400.00 149.35 584.16 2.18 236.44 1931.28
9 7400.00 100.82 525.47 2.03 219.65 1931.28
01 1500.00 128.97 1884.81 6.35 398.67 60.31
02 442.48 40.37 1705.02 6.42 200.61 60.31
03 1500.00 128.97 478.31 1.98 81.42 175.50
04 1500.00 53.05 130.70 1.02 4.60 175.50
04v 442.48 53.24 130.70 1.03 3.56 175.50
05 442.48 67.93 533.33 2.42 61.77 235.81
06 442.48 42.37 97.06 1.09 2.56 235.81
07 1500.00 42.86 98.69 1.09 3.88 235.81
08 1500.00 90.52 357.40 1.84 48.65 235.81
表 9  优化后SCBC/KC系统各状态点热力学参数结果
状态点 p/kPa θ / h /(kJ·kg?1) s/(kJ·kg?1·K?1) e/(kJ·kg?1) qm /(kg·s?1)
1 7400.00 35.00 402.40 1.66 200.84 1945.09
2 24198.00 121.73 453.36 1.68 246.29 1945.09
3 24198.00 281.92 696.46 2.21 341.30 2641.42
4 24198.00 417.94 867.76 2.48 434.43 2641.42
5 24198.00 599.85 1094.91 2.77 579.03 2641.42
6 7400.00 455.03 932.38 2.80 409.40 2641.42
7 7400.00 306.16 761.08 2.54 312.52 2641.42
8 7400.00 147.55 582.06 2.17 235.75 1945.09
9 7400.00 84.26 503.44 1.97 214.69 1945.09
09 1500.00 127.76 505.35 1.86 61.21 677.22
010 445.10 94.67 485.51 1.88 37.52 677.22
011 445.10 58.66 278.39 1.26 5.40 677.22
012 1500.00 59.37 279.52 1.26 6.29 677.22
表 10  优化后SCBC/ORC系统各状态点热力学参数结果
1 GARG P, KUMAR P, SRINIVASAN K Supercritical carbon dioxide Brayton cycle for concentrated solar power[J]. The Journal of Supercritical Fluids, 2013, 76: 54- 60
doi: 10.1016/j.supflu.2013.01.010
2 MECHERIA M, MOULLE Y L Supercritical CO2 Brayton cycles for coal-fired power plants [J]. Energy, 2016, 103: 758- 771
doi: 10.1016/j.energy.2016.02.111
3 AçıKKALP E Ecologic and sustainable objective thermodynamic evaluation of molten carbonate fuel cell–supercritical CO2 Brayton cycle hybrid system [J]. International Journal of Hydrogen Energy, 2017, 42: 6272- 6280
doi: 10.1016/j.ijhydene.2016.12.110
4 LI H, XU M, YAN X, et al Preliminary conceptual exploration about performance improvement on supercritical CO2 power system via integrating with different absorption power generation systems [J]. Energy Conversion and Management, 2018, 173: 219- 232
doi: 10.1016/j.enconman.2018.07.075
5 ZHANG F, LIAO G, E J, et al Comparative study on the thermodynamic and economic performance of novel absorption power cycles driven by the waste heat from a supercritical CO2 cycle [J]. Energy Conversion and Management, 2021, 228: 113671
6 LI Z, LIU X, SHAO Y, et al Research and development of supercritical carbon dioxide coal-fired power systems[J]. Journal of Thermal Science, 2020, 29 (3): 546- 575
doi: 10.1007/s11630-020-1282-6
7 MOHAMMED R H, ALSAGRI A S, WANG X Performance improvement of supercritical carbon dioxide power cycles through its integration with bottoming heat recovery cycles and advanced heat exchanger design: a review[J]. International Journal of Energy Research, 2020, 44: 7108- 7135
doi: 10.1002/er.5319
8 曹宇, 王治红, 马宁, 等 超临界二氧化碳布雷顿/有机朗肯循环联合系统的热力学特性[J]. 热能动力工程, 2020, 35 (4): 9- 23
CAO Yu, WANG Zhi-hong, MANG Ning, et al Thermodynamic properties of supercritical CO2 Brayton/organic Rankine cycle combined system [J]. Journal of Engineering for Thermal Energy and Power, 2020, 35 (4): 9- 23
doi: 10.16146/j.cnki.rndlgc.2020.04.002
9 BESARATI S M, YOGI G D Analysis of advanced supercritical carbon dioxide power cycles with a bottoming cycle for concentrating solar power applications[J]. Journal of Solar Energy Engineering, 2014, 136: 1- 7
10 SONG J, WANG Y, WANG K, et al Combined supercritical CO2 (SCO2) cycle and organic Rankine cycle (ORC) system for hybrid solar and geothermal power generation: thermoeconomic assessment of various configurations [J]. Renewable Energy, 2021, 174: 1020- 1035
doi: 10.1016/j.renene.2021.04.124
11 AKBARI A D, MAHMOUDI S M S Thermoeconomic analysis and optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle [J]. Energy, 2014, 78: 501- 512
doi: 10.1016/j.energy.2014.10.037
12 LI H, WANG M, WANG J, et al Exergoeconomic analysis and optimization of a supercritical CO2 cycle coupled with a Kalina cycle [J]. Journal of Energy Engineering, 2017, 143: 1- 13
13 FAN G, DAI Y P Thermo-economic optimization and part-load analysis of the combined supercritical CO2 and Kalina cycle [J]. Energy Conversion and Management, 2021, 245: 114572
14 FENG Y, DU Z, SHREKA M, et al Thermodynamic analysis and performance optimization of the supercritical carbon dioxide Brayton cycle combined with the Kalina cycle for waste heat recovery from a marine low-speed diesel engine[J]. Energy Conversion and Management, 2020, 206: 112483
15 NEMATI A, NAMI H, RANJBAR F, et al A comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery: a case study for CGAM cogeneration system[J]. Case Studies in Thermal Engineering, 2017, 9: 1- 13
doi: 10.1016/j.csite.2016.11.003
16 FIASCHI D, MANFRIDA G, ROGAI E, et al Exergoeconomic analysis and comparison between ORC and Kalina cycles to exploit low and medium-high temperature heat from two different geothermal sites[J]. Energy Conversion and Management, 2017, 154: 503- 516
doi: 10.1016/j.enconman.2017.11.034
17 WANG Y, TANG Q, WANG M, et al Thermodynamic performance comparison between ORC and Kalina cycles for multi-stream waste heat recovery[J]. Energy Conversion and Management, 2017, 143: 482- 492
doi: 10.1016/j.enconman.2017.04.026
18 OZAHI E, ABUSOGLU A, TOZLU A A comparative thermoeconomic analysis and optimization of two different combined cycles by utilizing waste heat source of an MSWPP[J]. Energy Conversion and Management, 2021, 228: 113583
19 WANG S, LIU C, ZHANG S, et al Multi-objective optimization and fluid selection of organic Rankine cycle (ORC) system based on economic-environmental-sustainable analysis[J]. Energy Conversion and Management, 2022, 254: 115238
[1] 王万良,金雅文,陈嘉诚,李国庆,胡明志,董建杭. 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报(工学版), 2022, 56(3): 531-541.
[2] 徐钧恒,杨晓钧,李兵. 基于交叉簧片式铰链的变弯度机翼机构设计[J]. 浙江大学学报(工学版), 2022, 56(3): 444-451, 509.
[3] 邓齐林,鲁娟,陈勇辉,冯健,廖小平,马俊燕. 基于深度强化学习的数控铣削加工参数优化方法[J]. 浙江大学学报(工学版), 2022, 56(11): 2145-2155.
[4] 陈俊杰,李洪均,曹张华. 性能感知的核心网控制面资源分配算法[J]. 浙江大学学报(工学版), 2021, 55(9): 1782-1787.
[5] 李笑竹,王维庆. 区域综合能源系统两阶段鲁棒博弈优化调度[J]. 浙江大学学报(工学版), 2021, 55(1): 177-188.
[6] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705.
[7] 黄华,邓文强,李源,郭润兰. 基于空间动力学优化的机床结构件质量匹配设计[J]. 浙江大学学报(工学版), 2020, 54(10): 2009-2017.
[8] 童水光,赵航,刘会琴,童哲铭,余跃,唐宁,吴伟杰,李进富,从飞云,张昊,王寅华,郝国帅. 中开多级离心泵效率优化计算方法[J]. 浙江大学学报(工学版), 2019, 53(5): 988-996.
[9] 毕晓君, 王朝. 基于超平面投影的高维多目标进化算法[J]. 浙江大学学报(工学版), 2018, 52(7): 1284-1293.
[10] 张德胜, 刘安, 陈健, 赵睿杰, 施卫东. 采用粒子群算法的水平轴潮流能水轮机翼型多目标优化[J]. 浙江大学学报(工学版), 2018, 52(12): 2349-2355.
[11] 余洋, 夏春和, 胡潇云. 采用混和路径攻击图的防御方案生成方法[J]. 浙江大学学报(工学版), 2017, 51(9): 1745-1759.
[12] 李建丽, 丁丁, 李涛. 基于二次聚类的多目标混合云任务调度算法[J]. 浙江大学学报(工学版), 2017, 51(6): 1233-1241.
[13] 张俊红, 张玉声, 王健, 徐喆轩, 胡欢, 赵永欢. 考虑热机耦合的排气歧管多目标优化设计[J]. 浙江大学学报(工学版), 2017, 51(6): 1153-1162.
[14] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[15] 杨姝, 刘国平, 亓昌, 王大志. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1593-1599.