机械与能源工程 |
|
|
|
|
超临界CO2布雷顿循环余热回收系统性能分析与优化 |
余廷芳( ),宋凌 |
南昌大学 先进制造学院,江西 南昌 330031 |
|
Performance analysis and optimization of supercritical CO2 Brayton cycle waste heat recovery system |
Ting-fang YU( ),Ling SONG |
School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China |
1 |
GARG P, KUMAR P, SRINIVASAN K Supercritical carbon dioxide Brayton cycle for concentrated solar power[J]. The Journal of Supercritical Fluids, 2013, 76: 54- 60
doi: 10.1016/j.supflu.2013.01.010
|
2 |
MECHERIA M, MOULLE Y L Supercritical CO2 Brayton cycles for coal-fired power plants [J]. Energy, 2016, 103: 758- 771
doi: 10.1016/j.energy.2016.02.111
|
3 |
AçıKKALP E Ecologic and sustainable objective thermodynamic evaluation of molten carbonate fuel cell–supercritical CO2 Brayton cycle hybrid system [J]. International Journal of Hydrogen Energy, 2017, 42: 6272- 6280
doi: 10.1016/j.ijhydene.2016.12.110
|
4 |
LI H, XU M, YAN X, et al Preliminary conceptual exploration about performance improvement on supercritical CO2 power system via integrating with different absorption power generation systems [J]. Energy Conversion and Management, 2018, 173: 219- 232
doi: 10.1016/j.enconman.2018.07.075
|
5 |
ZHANG F, LIAO G, E J, et al Comparative study on the thermodynamic and economic performance of novel absorption power cycles driven by the waste heat from a supercritical CO2 cycle [J]. Energy Conversion and Management, 2021, 228: 113671
|
6 |
LI Z, LIU X, SHAO Y, et al Research and development of supercritical carbon dioxide coal-fired power systems[J]. Journal of Thermal Science, 2020, 29 (3): 546- 575
doi: 10.1007/s11630-020-1282-6
|
7 |
MOHAMMED R H, ALSAGRI A S, WANG X Performance improvement of supercritical carbon dioxide power cycles through its integration with bottoming heat recovery cycles and advanced heat exchanger design: a review[J]. International Journal of Energy Research, 2020, 44: 7108- 7135
doi: 10.1002/er.5319
|
8 |
曹宇, 王治红, 马宁, 等 超临界二氧化碳布雷顿/有机朗肯循环联合系统的热力学特性[J]. 热能动力工程, 2020, 35 (4): 9- 23 CAO Yu, WANG Zhi-hong, MANG Ning, et al Thermodynamic properties of supercritical CO2 Brayton/organic Rankine cycle combined system [J]. Journal of Engineering for Thermal Energy and Power, 2020, 35 (4): 9- 23
doi: 10.16146/j.cnki.rndlgc.2020.04.002
|
9 |
BESARATI S M, YOGI G D Analysis of advanced supercritical carbon dioxide power cycles with a bottoming cycle for concentrating solar power applications[J]. Journal of Solar Energy Engineering, 2014, 136: 1- 7
|
10 |
SONG J, WANG Y, WANG K, et al Combined supercritical CO2 (SCO2) cycle and organic Rankine cycle (ORC) system for hybrid solar and geothermal power generation: thermoeconomic assessment of various configurations [J]. Renewable Energy, 2021, 174: 1020- 1035
doi: 10.1016/j.renene.2021.04.124
|
11 |
AKBARI A D, MAHMOUDI S M S Thermoeconomic analysis and optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle [J]. Energy, 2014, 78: 501- 512
doi: 10.1016/j.energy.2014.10.037
|
12 |
LI H, WANG M, WANG J, et al Exergoeconomic analysis and optimization of a supercritical CO2 cycle coupled with a Kalina cycle [J]. Journal of Energy Engineering, 2017, 143: 1- 13
|
13 |
FAN G, DAI Y P Thermo-economic optimization and part-load analysis of the combined supercritical CO2 and Kalina cycle [J]. Energy Conversion and Management, 2021, 245: 114572
|
14 |
FENG Y, DU Z, SHREKA M, et al Thermodynamic analysis and performance optimization of the supercritical carbon dioxide Brayton cycle combined with the Kalina cycle for waste heat recovery from a marine low-speed diesel engine[J]. Energy Conversion and Management, 2020, 206: 112483
|
15 |
NEMATI A, NAMI H, RANJBAR F, et al A comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery: a case study for CGAM cogeneration system[J]. Case Studies in Thermal Engineering, 2017, 9: 1- 13
doi: 10.1016/j.csite.2016.11.003
|
16 |
FIASCHI D, MANFRIDA G, ROGAI E, et al Exergoeconomic analysis and comparison between ORC and Kalina cycles to exploit low and medium-high temperature heat from two different geothermal sites[J]. Energy Conversion and Management, 2017, 154: 503- 516
doi: 10.1016/j.enconman.2017.11.034
|
17 |
WANG Y, TANG Q, WANG M, et al Thermodynamic performance comparison between ORC and Kalina cycles for multi-stream waste heat recovery[J]. Energy Conversion and Management, 2017, 143: 482- 492
doi: 10.1016/j.enconman.2017.04.026
|
18 |
OZAHI E, ABUSOGLU A, TOZLU A A comparative thermoeconomic analysis and optimization of two different combined cycles by utilizing waste heat source of an MSWPP[J]. Energy Conversion and Management, 2021, 228: 113583
|
19 |
WANG S, LIU C, ZHANG S, et al Multi-objective optimization and fluid selection of organic Rankine cycle (ORC) system based on economic-environmental-sustainable analysis[J]. Energy Conversion and Management, 2022, 254: 115238
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|