计算机技术 |
|
|
|
|
多目标粒子群优化算法及其应用研究综述 |
叶倩琳1( ),王万良1,*( ),王铮2 |
1. 浙江工业大学 计算机科学与技术学院,浙江 杭州 310023 2. 浙大城市学院 计算机与计算科学学院,浙江 杭州 310015 |
|
Survey of multi-objective particle swarm optimization algorithms and their applications |
Qianlin YE1( ),Wanliang WANG1,*( ),Zheng WANG2 |
1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China 2. School of Computer and Computational Sciences, Hangzhou City University, Hangzhou 310015, China |
1 |
王 丽, 任宇, 邱启仓, 等 多目标进化算法性能评价指标研究综述[J]. 计算机学报, 2021, 44 (8): 1590- 1619 WANG Li, Ren Yu, Qiu Qicang, et al Survey on performance indicator for multi-objective evolutionary algorithms[J]. Chinese Journal of Computers, 2021, 44 (8): 1590- 1619
doi: 10.11897/SP.J.1016.2021.01590
|
2 |
王万良, 金雅文, 陈嘉诚, 等 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报: 工学版, 2022, 56 (3): 531- 541 WANG Wanliang, JIN Yawen, CHEN Jiachen, et al Multi-objective particle-swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (3): 531- 541
|
3 |
LUO Y, ZHANG K, YANG H, et al. A reduced mixed representation based multi-objective evolutionary algorithm for large-scale overlapping community detection [C]// 2021 IEEE Congress on Evolutionary Computation . Kraków: IEEE, 2021: 2435−2442.
|
4 |
王万良. 人工智能导论 第5版[M]. 北京: 高等教育出版社, 2022.
|
5 |
ZHOU C, DAI G, ZHANG C, et al Entropy based evolutionary algorithm with adaptive reference points for many-objective optimization problems[J]. Information Sciences, 2018, 465: 232- 247
doi: 10.1016/j.ins.2018.07.012
|
6 |
冯茜, 李擎, 全威, 等 多目标粒子群优化算法研究综述[J]. 工程科学学报, 2021, 43 (6): 745- 753 FENG Qian, LI Qing, QUAN Wei, et al Overview of multiobjective particle swarm optimization algorithm[J]. Chinese Journal of Engineering, 2021, 43 (6): 745- 753
|
7 |
YUAN Y, XU H, WANG B. An improved NSGA-III procedure for evolutionary many-objective optimization [C]// Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation . New York: [s. n. ], 2014: 661−668.
|
8 |
ZHENG J, ZHOU F, ZOU J, et al A dynamic multi-objective optimization based on a hybrid of pivot points prediction and diversity strategies[J]. Swarm and Evolutionary Computation, 2023, 78: 101284
|
9 |
ZHANG K, SHEN C, YEN G G, et al Two-stage double niched evolution strategy for multimodal multiobjective optimization[J]. IEEE Transactionsactions on Evolutionary Computation, 2021, 25 (4): 754- 768
doi: 10.1109/TEVC.2021.3064508
|
10 |
MING M, TRIVEDI A, WANG R, et al A dual-population-based evolutionary algorithm for constrained multiobjective optimization[J]. IEEE Transactionsactions on Evolutionary Computation, 2021, 25 (4): 739- 753
doi: 10.1109/TEVC.2021.3066301
|
11 |
王万良. 人工智能及其应用 第4版[M]. 北京: 高等教育出版社, 2020.
|
12 |
杨辉华, 谢谱模, 张晓凤, 等 求解多目标优化问题的改进布谷鸟搜索算法[J]. 浙江大学学报: 工学版, 2015, 49 (8): 1600- 1608 YANG Huihua, XIE Pumo, ZHANG Xiaofeng, et al Improved cuckoo search algorithm for multi-objective optimization problems[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (8): 1600- 1608
|
13 |
鲁建厦, 翟文倩, 李嘉丰, 等 基于改进混合蛙跳算法的多约束车辆路径优化[J]. 浙江大学学报: 工学版, 2021, 55 (2): 259- 270 LU Jianxia, ZHAI Wenqian, LI Jiafeng, et al Muti-constraint vehicle routing optimization based on improved hybrid shuffled frog leaping algorithm[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (2): 259- 270
|
14 |
CORUS D, DANG D C, EREMEEV A V, et al Level-based analysis of genetic algorithms and other search processes[J]. IEEE Transactionsactions on Evolutionary Computation, 2018, 22 (5): 707- 719
doi: 10.1109/TEVC.2017.2753538
|
15 |
PIOTROWSKI A P Review of differential evolution population size[J]. Swarm and Evolutionary Computation, 2017, 32: 1- 24
doi: 10.1016/j.swevo.2016.05.003
|
16 |
COLORNI A, DORIGO M, MANIEZZO V, et al. Distributed optimization by ant colonies [C]// Proceedings of ECAL91-European Conference on Artificial Life . Milano: Elsevier, 1992: 134−142.
|
17 |
DORIGO M. Optimization, learning and natural algorithms [EB/OL]. [2024-04-09]. https://xueshu.baidu.com/usercenter/paper/show?paperid=1b9ebb7e73db6f097f286e54d5fa31db.
|
18 |
KENNEDY J, EBERHART R. Particle swarm optimization [C]// Proceedings of ICNN'95-International Conference on Neural Networks . Perth: IEEE, 1995: 1942−1948.
|
19 |
COELLO C A C, LECHUGA M S. MOPSO: a proposal for multiple objective particle swarm optimization [C]// Proceedings of the 2002 Congress on Evolutionary Computation . Honolulu: IEEE, 2002: 1051−1056.
|
20 |
毕晓君, 王朝 基于超平面投影的高维多目标进化算法[J]. 浙江大学学报: 工学版, 2018, 52 (7): 1284- 1293 BI Xiaojun, WANG Chao Many-objective evolutionary algorithm based on hyperplane projection[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (7): 1284- 1293
|
21 |
谢承旺, 潘嘉敏, 郭华, 等. 一种采用混合策略的大规模多目标进化算法. 计算机学报[EB/OL]. (2023-07-13) [2023-08-08]. https: //kns.cnki.net/kcms2/detail/11.1826.TP.20230712.1925.021.html
|
22 |
XU G, LUO K, JING G, et al On convergence analysis of multi-objective particle swarm optimization algorithm[J]. European Journal of Operational Research, 2020, 286 (1): 32- 38
doi: 10.1016/j.ejor.2020.03.035
|
23 |
HOUSSEIN E H, GAD A G, HUSSAIN K, et al Major advances in particle swarm optimization: theory, analysis, and application[J]. Swarm and Evolutionary Computation, 2021, 63: 100868- 100905
doi: 10.1016/j.swevo.2021.100868
|
24 |
DE CARVALHO A B, POZO A Measuring the convergence and diversity of CDAS multi-objective particle swarm optimization algorithms: a study of many-objective problems[J]. Neurocomputing, 2012, 75 (1): 43- 51
doi: 10.1016/j.neucom.2011.03.053
|
25 |
ZAPOTECAS MARTíNEZ S, COELLO COELLO C A. A multi-objective particle swarm optimizer based on decomposition [C]// Proceedings of the Annual Conference on Genetic and Evolutionary Computation . Dublin: IEEE, 2011: 69−76.
|
26 |
AL MOUBAYED N, PETROVSKI A, MCCALL J D2MOPSO: MOPSO based on decomposition and dominance with archiving using crowding distance in objective and solution spaces[J]. Evolution Computation, 2014, 22 (1): 47- 77
doi: 10.1162/EVCO_a_00104
|
27 |
纪昌明, 马皓宇, 李宁宁, 等 基于树形结构无界存档的多目标粒子群算法[J]. 控制与决策, 2020, 35 (11): 2657- 2686 JI Changming, MA Haoyu, LI Ningning, et al Multi-objective particle swarm optimization algorithm based on tree-structured unbounded archive[J]. Control and Decision, 2020, 35 (11): 2657- 2686
|
28 |
ZHANG X, ZHENG X, CHENG R, et al A competitive mechanism based multi-objective particle swarm optimizer with fast convergence[J]. Information Sciences, 2018, 427: 63- 76
doi: 10.1016/j.ins.2017.10.037
|
29 |
LIN Q, LIU S, ZHU Q, et al Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems[J]. IEEE Transactionsactions on Evolutionary Computation, 2018, 22 (1): 32- 46
doi: 10.1109/TEVC.2016.2631279
|
30 |
余伟伟, 谢承旺, 闭应洲, 等 一种基于自适应模糊支配的高维多目标粒子群算法[J]. 自动化学报, 2018, 44 (12): 2278- 2289 YU Weiwei, XIE Chengwang, BI Yingzhou, et al Many-objective particle swarm optimization based on adaptive fuzzy dominance[J]. Acta Automatica Sinica, 2018, 44 (12): 2278- 2289
|
31 |
谭阳, 唐德权, 曹守富 基于超球形模糊支配的高维多目标粒子群优化算法[J]. 计算机应用, 2019, 39 (11): 3233- 3241 TAN Yang, TANG Dequan, CAO Shoufu Many-objective particle swarm optimization algorithm based on hyper-spherical fuzzy dominance[J]. Journal of Computer Applications, 2019, 39 (11): 3233- 3241
|
32 |
TANABE R, ISHIBUCHI H A review of evolutionary multimodal multiobjective optimization[J]. IEEE Transactionsactions on Evolutionary Computation, 2020, 24 (1): 193- 200
doi: 10.1109/TEVC.2019.2909744
|
33 |
QU B, LI C, LIANG J, et al A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems[J]. Applied Soft Computing, 2020, 86: 105886
doi: 10.1016/j.asoc.2019.105886
|
34 |
顾清华, 骆家乐, 李学现 基于小生境的多目标进化算法[J]. 计算机工程与应用, 2023, 59 (1): 126- 139 GU Qinghua, LUO Jiale, LI Xuexian Evolutionary algorithm based on niche for multi-objective optimization[J]. Computer Engineering and Applications, 2023, 59 (1): 126- 139
doi: 10.3778/j.issn.1002-8331.2207-0006
|
35 |
公硕鹏. 基于小生境的多模态多目标优化算法研究[D]. 武汉: 华中科技大学, 2022. GONG Shuopeng. Research on multimodel multiobjective optimization algorithm based on niching methods [D]. Wuhan: Huazhong University of Science and Technology, 2022.
|
36 |
ZAPOTECAS MARTíNEZ S, COELLO COELLO C A. A multi-objective particle swarm optimizer based on decomposition [C]// Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation . Dublin: [s. n.], 2011: 69−76.
|
37 |
ZHAN Z H, LI J, CAO J, et al Multiple populations for multiple objectives: a coevolutionary technique for solving multiobjective optimization problems[J]. IEEE Transactions on Cybernetics, 2013, 43 (2): 445- 463
doi: 10.1109/TSMCB.2012.2209115
|
38 |
DAI C, WANG Y, YE M A new multi-objective particle swarm optimization algorithm based on decomposition[J]. Information Sciences, 2015, 325: 541- 557
doi: 10.1016/j.ins.2015.07.018
|
39 |
黄佩秋, 刘建昌, 谭树彬, 等 混合多目标粒子群优化算法在热精轧负荷分配优化中的应用[J]. 控制理论与应用, 2017, 34 (1): 93- 100 HUANG Peiqiu, LIU Jianchang, TAN Shubin, et al Application of the hybrid multi-objective particle swarm optimization algorithm in load distribution of hot finishing mills[J]. Control Theory and Applications, 2017, 34 (1): 93- 100
|
40 |
韩红桂, 阿音嘎, 张璐, 等 自适应分解式多目标粒子群优化算法[J]. 电子学报, 2020, 48 (7): 1245- 1254 HAN Honggui, A Yinga, ZHANG Lu, et al Adaptive multiobjective particle swarm optimization based on decomposition archive[J]. Acta Electronica Sinica, 2020, 48 (7): 1245- 1254
doi: 10.3969/j.issn.0372-2112.2020.07.001
|
41 |
CHEN L, LIU H L A region decomposition-based multi-objective particle swarm optimization algorithm[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2014, 28 (8): 1459009
doi: 10.1142/S0218001414590095
|
42 |
LUO J, QI Y, XIE J, et al A hybrid multi-objective PSO-EDA algorithm for reservoir flood control operation[J]. Applied Soft Computing, 2015, 34: 526- 538
doi: 10.1016/j.asoc.2015.05.036
|
43 |
YAO G, DING Y, JIN Y, et al Endocrine-based coevolutionary multi-swarm for multi-objective workflow scheduling in a cloud system[J]. Soft Computing, 2017, 21 (15): 4309- 4322
|
44 |
YANG Y, ZHANG T, YI W, et al Deployment of multistatic radar system using multi-objective particle swarm optimisation[J]. IET Radar, Sonar and Navigation, 2018, 12 (5): 485- 493
doi: 10.1049/iet-rsn.2017.0351
|
45 |
张庆科, 孟祥旭, 张化祥, 等 基于随机维度划分与学习的粒子群优化算法[J]. 浙江大学学报: 工学版, 2018, 52 (2): 367- 378 ZHANG Qingke, MENG Xiangxu, ZHANG Huaxiang, et al Particle swarm optimization based on random vector partition and learning[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (2): 367- 378
|
46 |
ZHANG W, LI G, ZHANG W, et al A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization[J]. Swarm and Evolutionary Computation, 2019, 50: 100569
doi: 10.1016/j.swevo.2019.100569
|
47 |
刘彬, 刘泽仁, 赵志彪, 等 基于速度交流的多种群多目标粒子群算法研究[J]. 计量学报, 2020, 41 (8): 1002- 1011 LIU Bin, LIU Zeren, ZHAO Zhibiao, et al Research on multi-population multi-objective particle swarm optimization algorithm based on velocity communication[J]. Acta Metrologica Sinica, 2020, 41 (8): 1002- 1011
doi: 10.3969/j.issn.1000-1158.2020.08.18
|
48 |
QI Y, MA X, LIU F, et al MOEA/D with adaptive weight adjustment[J]. Evolution Computation, 2014, 22 (2): 231- 264
doi: 10.1162/EVCO_a_00109
|
49 |
LIN Q, LI J, DU Z, et al A novel multi-objective particle swarm optimization with multiple search strategies[J]. European Journal of Operational Research, 2015, 247 (3): 732- 744
|
50 |
ZHU Q, LIN Q, CHEN W, et al An external archive-guided multiobjective particle swarm optimization algorithm[J]. IEEE Transactions on Cybernetics, 2017, 47 (9): 2794- 2808
doi: 10.1109/TCYB.2017.2710133
|
51 |
杨景明, 侯新培, 崔慧慧, 等 基于融合多策略改进的多目标粒子群优化算法[J]. 控制与决策, 2018, 33 (2): 226- 234 YANG Jingming, HOU Xinpei, CUI Huihui, et al Muti-objective adoptive chaotic particle swarm optimization algorithm[J]. Control and Decision, 2018, 33 (2): 226- 234
|
52 |
KNOWLES J D, COME D W Approximating the nondominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation, 2000, 8 (2): 149- 172
doi: 10.1162/106365600568167
|
53 |
李笠, 王万良, 徐新黎, 等 基于网格排序的多目标粒子群优化算法[J]. 计算机研究与发展, 2017, 54 (5): 1012- 1023 LI Li, WANG Wanliang, XU Xinli, et al Muti-objective particle swarm optimization based on grid ranking[J]. Journal of Computer Research and Development, 2017, 54 (5): 1012- 1023
|
54 |
LI L, WANG W, XU X Multi-objective particle swarm optimization based on global margin ranking[J]. Information Sciences, 2017, 375: 30- 47
doi: 10.1016/j.ins.2016.08.043
|
55 |
李笠. 基于排序策略的多目标粒子群优化: 研究与应用[D]. 杭州: 浙江工业大学, 2017. LI Li. Ranking-based multi-objective particle swarm optimization: rearch and application [D]. Hangzhou: Zhejiang University of Technology, 2017.
|
56 |
LENG R, OUYANG A, LIU Y, et al A multi-objective particle swarm optimization based on grid distance[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 34 (3): 2059008
|
57 |
ZOU K, LIU Y, WANG S, et al A multiobjective particle swarm optimization algorithm based on grid technique and multistrategy[J]. Journal of Mathematics, 2021, 2021: 1- 17
|
58 |
吴耀威, 刘衍民 基于网格密度的混合新型多目标粒子群算法[J]. 遵义师范学院学报, 2021, 23 (5): 67- 71 WU Yaowei, LIU Yanmin Hybrid new multi-objective particle swarm optimization algorithm based on grid density[J]. Journal of Zunyi Normal University, 2021, 23 (5): 67- 71
doi: 10.3969/j.issn.1009-3583.2021.05.018
|
59 |
YE Q, WANG Z, ZHAO Y, et al A clustering-based competitive particle swarm optimization with grid ranking for multi-objective optimization problems[J]. Scientific Reports, 2023, 13 (1): 11754
doi: 10.1038/s41598-023-38529-4
|
60 |
LI G, WANG W, ZHANG W, et al Grid search based multi-population particle swarm optimization algorithm for multimodal multi-objective optimization[J]. Swarm and Evolutionary Computation, 2021, 62: 100843
doi: 10.1016/j.swevo.2021.100843
|
61 |
王学武, 魏建斌, 周昕, 等 一种基于超体积指标的多目标进化算法[J]. 华东理工大学学报: 自然科学版, 2020, 46 (6): 780- 791 WANG Xuewu, WEI Jianbin, ZHOU Xin, et al Hypervolume-based multi-objective evolutionary algorithm[J]. Journal of East China University of Science and Technology, 2020, 46 (6): 780- 791
|
62 |
郝秦霞 基于R2指标的高维多目标差分进化推荐式课程系统[J]. 计算机应用, 2020, 40 (10): 2951- 2959 HAO Qinxia Course recommendation system based on R2 index and multi-objective differential evolution[J]. Journal of Computer Applications, 2020, 40 (10): 2951- 2959
|
63 |
GARCíA I C, COELLO C A C, ARIAS-MONTAñO A. MOPSOhv: a new hypervolume-based multi-objective particle swarm optimizer [C]// Proceedings of the 2014 IEEE Congress on Evolutionary Computation . Beijing: IEEE, 2014: 266−273.
|
64 |
LIANG X, DAI C, YE N. Multi-objective particle swarm optimization algorithm based on decomposition and hypervolume for synthesis gas production [C]// Proceedings of the 2022 18th International Conference on Computational Intelligence and Security . Chengdu: IEEE, 2022: 356−359.
|
65 |
LI F, LIU J, TAN S, et al. R2-MOPSO: a multi-objective particle swarm optimizer based on R2-indicator and decomposition [C]// Proceedings of the 2015 IEEE congress on evolutionary computation . Sendai: IEEE, 2015: 3148−3155.
|
66 |
WEI L X, LI X, FAN R, et al A hybrid multiobjective particle swarm optimization algorithm based on R2 indicator[J]. IEEE Access, 2018, 6: 14710- 14721
doi: 10.1109/ACCESS.2018.2812701
|
67 |
LI X, LI X L, WANG K, et al A multi-objective particle swarm optimization algorithm based on enhanced selection[J]. IEEE Access, 2019, 7: 168091- 168103
doi: 10.1109/ACCESS.2019.2954542
|
68 |
LIU J, LI F, KONG X, et al Handling many-objective optimisation problems with R2 indicator and decomposition-based particle swarm optimiser[J]. International Journal of Systems Science, 2019, 50 (2): 320- 336
doi: 10.1080/00207721.2018.1552765
|
69 |
李飞, 吴紫恒, 刘阚蓉, 等 基于R2指标和目标空间分解的高维多目标粒子群优化算法[J]. 控制与决策, 2021, 36 (9): 2085- 2094 LI Fei, WU Ziheng, LIU Kanrong, et al R2 indicator and objective space partition based many-objective particle swarm optimizer[J]. Control and Decision, 2021, 36 (9): 2085- 2094
|
70 |
GU Q, JIANG M, JIANG S, et al Multi-objective particle swarm optimization with R2 indicator and adaptive method[J]. Complex and Intelligent Systems, 2021, 7 (5): 2697- 2710
doi: 10.1007/s40747-021-00445-3
|
71 |
SUN X, CHEN Y, LIU Y, et al Indicator-based set evolution particle swarm optimization for many-objective problems[J]. Soft Computing, 2016, 20 (6): 2219- 2232
doi: 10.1007/s00500-015-1637-1
|
72 |
WU B, HU W, HE Z, et al. A many-objective particle swarm optimization based on virtual Pareto front [C]// Proceedings of the 2018 IEEE Congress on Evolutionary Computation . Rio de Janeiro: IEEE, 2018: 1−8.
|
73 |
LUO J, HUANG X, YANG Y, et al A many-objective particle swarm optimizer based on indicator and direction vectors for many-objective optimization[J]. Information Sciences, 2020, 514: 166- 202
doi: 10.1016/j.ins.2019.11.047
|
74 |
ZAPOTECAS-MARTíNEZ S, LóPEZ-JAIMES A, GARCíA-NáJERA A LIBEA: a lebesgue indicator-based evolutionary algorithm for multi-objective optimization[J]. Swarm and Evolutionary Computation, 2019, 44: 404- 419
doi: 10.1016/j.swevo.2018.05.004
|
75 |
KAWAGUCHI S, FUKUYAMA Y Improved parallel reactive hybrid particle swarm optimization using improved neighborhood schedule generation method for the integrated framework of optimal production scheduling and operational planning of an energy plant in a factory[J]. Electronics and Communications in Japan, 2020, 103 (7): 37- 48
doi: 10.1002/ecj.12237
|
76 |
SECK-TUOH-MORA J C, MEDINA-MARIN J, MARTINEZ-GOMEZ E S, et al Cellular particle swarm optimization with a simple adaptive local search strategy for the permutation flow shop scheduling problem[J]. Archives of Control Sciences, 2019, 29 (2): 205- 226
|
77 |
KAYA S, GüMüŞçü A, AYDILEK İ B, et al Solution for flow shop scheduling problems using chaotic hybrid firefly and particle swarm optimization algorithm with improved local search[J]. Soft Computing, 2021, 25 (10): 7143- 7154
doi: 10.1007/s00500-021-05673-w
|
78 |
谢美华, 李艳武, 葛棚丹 自适应混合粒子群算法求解置换流水车间调度问题[J]. 计算机应用研究, 2023, 40 (11): 1- 8 XIE Meihua, LI Yanwu, GE Pengdan Self-adaptive hybrid particle swarm optimization for permutation flow shop scheduling problem[J]. Application Research of Computers, 2023, 40 (11): 1- 8
|
79 |
LONG F, JIN B, XU H, et al Research on multi-objective optimization of smart grid based on particle swarm optimization[J]. Electrica, 2023, 23 (2): 222- 230
|
80 |
XIONG W, GONG K, SHI W, et al Design and implementation of power mobile inspection system based on improved particle swarm optimization[J]. Journal of Physics: Conference Series, 2021, 2033 (1): 012202
doi: 10.1088/1742-6596/2033/1/012202
|
81 |
DENG C, ZHANG X, HUANG Y, et al Equipping seasonal exponential smoothing models with particle swarm optimization algorithm for electricity consumption forecasting[J]. Energies, 2021, 14 (13): 4036
doi: 10.3390/en14134036
|
82 |
KAHOULI O, ALSAIF H, BOUTERAA Y, et al Power system reconfiguration in distribution network for improving reliability using genetic algorithm and particle swarm optimization[J]. Applied Sciences, 2021, 11 (7): 3092
doi: 10.3390/app11073092
|
83 |
DUMITRU D, DIOȘAN L, ANDREICA A, et al A transfer learning approach on the optimization of edge detectors for medical images using particle swarm optimization[J]. Entropy, 2021, 23 (4): 414
doi: 10.3390/e23040414
|
84 |
HASSAN M U, BADSHAH N, ZAHIR S Automatic initialization for active contour models based on particle swarm optimization and application to medical images[J]. Journal of Mathematical and Computational Science, 2021, 11 (1): 243- 264
|
85 |
井向阳, 林鹏飞, 游进军, 等 岷江中游梯级闸坝联合优化调度研究[J]. 水利水电技术, 2021, 52 (3): 23- 31 JIN Xiangyang, LIN Pengfei, YOU Jinjun, et al Study on joint optimal scheduling of cascade sluice on mid-Minjiang River[J]. Water Resources and Hydropower Engineering, 2021, 52 (3): 23- 31
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|