|
|
基于个体预测的动态多目标优化算法 |
王万良(),陈忠馗,吴菲,王铮,俞梦娇 |
浙江工业大学 计算机科学与技术学院,浙江 杭州 310023 |
|
Dynamic multi-objective optimization algorithm based on individual prediction |
Wan-liang WANG(),Zhong-kui CHEN,Fei WU,Zheng WANG,Meng-jiao YU |
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China |
引用本文:
王万良,陈忠馗,吴菲,王铮,俞梦娇. 基于个体预测的动态多目标优化算法[J]. 浙江大学学报(工学版), 2023, 57(11): 2133-2146.
Wan-liang WANG,Zhong-kui CHEN,Fei WU,Zheng WANG,Meng-jiao YU. Dynamic multi-objective optimization algorithm based on individual prediction. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2133-2146.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.11.001
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I11/2133
|
1 |
ZOU J, ZHENG J, DENG C, et al An evaluation of non-redundant objective sets based on the spatial similarity ratio[J]. Soft Computing, 2015, 19 (8): 2275- 2286
|
2 |
王万良, 金雅文, 陈嘉诚, 等 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报: 工学版, 2022, 56 (3): 531- 541 WANG Wan-liang, JIN Ya-wen, CHEN Jia-cheng, et al Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (3): 531- 541
|
3 |
张程, 金涛, 李培强, 等 采用多目标蝙蝠算法的电力系统广域协调控制策略[J]. 浙江大学学报: 工学版, 2019, 53 (3): 589- 597 ZHANG Cheng, JIN Tao, LI Pei-qiang, et al Wide-area coordination control strategy for power system using multi-objective bat algorithm[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (3): 589- 597
|
4 |
陈俊杰, 李洪均, 曹张华 性能感知的核心网控制面资源分配算法[J]. 浙江大学学报: 工学版, 2021, 55 (9): 1782- 1787 CHEN Jun-jie, LI Hong-jun, CAO Zhang-hua Performance-aware resource allocation algorithm for core network control plane[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (9): 1782- 1787
|
5 |
DEB K, PRATAP A, AGARWAL S, et al A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182- 197
doi: 10.1109/4235.996017
|
6 |
ZHANG Q, ZHOU A, JIN Y RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm[J]. IEEE Transactions on Evolutionary Computation, 2008, 12 (1): 41- 63
doi: 10.1109/TEVC.2007.894202
|
7 |
ZHANG Q, LI H MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11 (6): 712- 731
doi: 10.1109/TEVC.2007.892759
|
8 |
GIUSEPPE P, STEFANO S To Celigny, in the footprints of vilfredo pareto's "optimum" [Historical Corner][J]. IEEE Antennas and Propagation Magazine, 2014, 56 (3): 249- 254
doi: 10.1109/MAP.2014.6867724
|
9 |
HATZAKIS I, WALLACE D. Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach [C]// Genetic and Evolutionary Computation Conference. Washington: ACM, 2006: 1201-1208.
|
10 |
ZHOU A, JIN Y, ZHANG Q A population prediction strategy for evolutionary dynamic multiobjective optimization[J]. IEEE Transactions on Cybernetics, 2014, 44 (1): 40- 53
doi: 10.1109/TCYB.2013.2245892
|
11 |
ZOU J, LI Q, YANG S, et al A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization[J]. Applied Soft Computing, 2017, 61: 806- 818
doi: 10.1016/j.asoc.2017.08.004
|
12 |
LI Q, ZOU J, YANG S, et al A predictive strategy based on special points for evolutionary dynamic multi-objective optimization[J]. Soft Computing, 2019, 23 (11): 3723- 3739
doi: 10.1007/s00500-018-3033-0
|
13 |
RONG M, GONG D, ZHANG Y, et al Multidirectional prediction approach for dynamic multiobjective optimization problems[J]. IEEE Transactions on Cybernetics, 2018, 49 (9): 3362- 3374
|
14 |
CHEN Y, ZOU J, LIU Y, et al Combining a hybrid prediction strategy and a mutation strategy for dynamic multiobjective optimization[J]. Swarm and Evolutionary Computation, 2022, 70: 101041
doi: 10.1016/j.swevo.2022.101041
|
15 |
EATON J, YANG S, GONGORA M Ant colony optimization for simulated dynamic multi-objective railway junction rescheduling[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18 (11): 1- 13
doi: 10.1109/TITS.2017.2760981
|
16 |
ZHANG Z, QIAN S Artificial immune system in dynamic environments solving time-varying non-linear constrained multi-objective problems[J]. Soft Computing, 2011, 15 (7): 1333- 1349
doi: 10.1007/s00500-010-0674-z
|
17 |
HUTZSCHENREUTER A K, PETER A N, HAN B, et al. Evolutionary multiobjective optimization for dynamic hospital resource management [C]// Evolutionary Multi-Criterion Optimization. Nantes: EMO, 2013: 320-334.
|
18 |
GUO Y, CHENG J, LUO S, et al Robust dynamic multi-objective vehicle routing optimization method[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15 (6): 1891- 1903
doi: 10.1109/TCBB.2017.2685320
|
19 |
SAHMOUD S, TOPCUOGLU H R. Sensor-based change detection schemes for dynamic multi-objective optimization problems [C]// Symposium Series on Computational Intelligence. Athens: IEEE, 2016: 1-8.
|
20 |
RICHTER H. Detecting change in dynamic fitness landscapes [C]// IEEE Congress on Evolutionary Computation. Trondheim: IEEE, 2009: 1613-1620.
|
21 |
LIU R, LI J, FAN J, et al A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization[J]. European Journal of Operational Research, 2017, 261 (3): 1028- 1051
doi: 10.1016/j.ejor.2017.03.048
|
22 |
SAHMOUD S, TOPCUOGLU H R. A memory-based NSGA-II algorithm for dynamic multi-objective optimization problems [C]// Applications of Evolutionary Computation: 19th European Conference. Porto: [s. n. ], 2016: 296-310.
|
23 |
FARINA M, DEB K, PAOLO A Dynamic multiobjective optimization problems: test cases, approximations, and applications[J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (5): 311- 326
|
24 |
DAS I, DENNIS J E Normal boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems[J]. SIAM Journal on Optimization, 1998, 8 (3): 631- 657
doi: 10.1137/S1052623496307510
|
25 |
DEB K, JAIN H An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. Evolutionary Computation, IEEE Transactions, 2014, 18 (4): 577- 601
doi: 10.1109/TEVC.2013.2281535
|
26 |
JAIN H, DEB K An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation, 2014, 18 (4): 602- 622
doi: 10.1109/TEVC.2013.2281534
|
27 |
RUAN G, YU G, ZHENG J, et al The effect of diversity maintenance on prediction in dynamic multi-objective optimization[J]. Applied Soft Computing, 2017, 58: 631- 647
doi: 10.1016/j.asoc.2017.05.008
|
28 |
ZHENG J, ZHOU Y, ZOU J, et al A prediction strategy based on decision variable analysis for dynamic multi-objective optimization[J]. Swarm and Evolutionary Computation, 2021, 60: 100786
doi: 10.1016/j.swevo.2020.100786
|
29 |
LIANG Z, ZOU Y, ZHENG S, et al A feedback-based prediction strategy for dynamic multi-objective evolutionary optimization[J]. Expert Systems with Applications, 2021, 172: 114594
doi: 10.1016/j.eswa.2021.114594
|
30 |
LIANG Z, WU T, MA X, et al A dynamic multiobjective evolutionary algorithm based on decision variable classification[J]. IEEE Transactions on Cybernetics, 2022, 52 (3): 1602- 1615
doi: 10.1109/TCYB.2020.2986600
|
31 |
ZHANG Q, YANG S, JIANG S, et al Novel prediction strategies for dynamic multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 24 (2): 260- 274
doi: 10.1109/TEVC.2019.2922834
|
32 |
MCKAY M D, BECKMAN R J, CONOVER W J A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2012, 42 (1): 55- 61
|
33 |
ZHANG K, SHEN C, LIU X, et al Multiobjective evolution strategy for dynamic multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 24 (5): 974- 988
doi: 10.1109/TEVC.2020.2985323
|
34 |
GOH C K, TAN C K A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13 (1): 103- 127
doi: 10.1109/TEVC.2008.920671
|
35 |
YUAN Y, XU H, WANG B, et al Balancing convergence and diversity in decomposition-based many-objective optimizers[J]. IEEE Transactions on Evolutionary Computation, 2015, 20 (2): 180- 198
|
36 |
ZHOU A, JIN Y, ZHANG Q, et al. Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization [C]// International conference on evolutionary multi-criterion optimization. Matsushima: EMO, 2007: 832-846.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|