计算机技术 |
|
|
|
|
用于多元时间序列预测的图神经网络模型 |
张晗( ) |
东北财经大学 数据科学与人工智能学院,大连 辽宁 116025 |
|
Graph neural network model for multivariate time series forecasting |
Han ZHANG( ) |
School of Data Science and Artificial Intelligence, Dongbei University of Finance and Economics, Dalian 116025, China |
1 |
WEI W S. Multivariate time series analysis and applications [M]. New York: John Wiley and Sons, 2018.
|
2 |
DU S, LI T, YANG Y, et al Multivariate time series forecasting via attention-based encoder-decoder framework[J]. Neurocomputing, 2020, 388: 269- 279
doi: 10.1016/j.neucom.2019.12.118
|
3 |
CIABURRO G, IANNACE G Machine learning-based algorithms to knowledge extraction from time series data: a review[J]. Data, 2021, 6 (6): 55
doi: 10.3390/data6060055
|
4 |
BENIDIS K, RANGAPURAM S S, FLUNKERT V, et al Deep learning for time series forecasting: tutorial and literature survey[J]. ACM Computing Surveys, 2022, 55 (6): 1- 36
|
5 |
FENG S, XU C, ZUO Y, et al Relation-aware dynamic attributed graph attention network for stocks recommendation[J]. Pattern Recognition, 2022, 121: 108119
doi: 10.1016/j.patcog.2021.108119
|
6 |
HASANI R, LECHNER M, AMINI A, et al. Liquid time-constant networks [C]// Proceedings of the AAAI Conference on Artificial Intelligence . [s.l.]: AAAI, 2021(35): 7657–7666.
|
7 |
SPADON G, HONG S, BRANDOLI B, et al Pay attention to evolution: time series forecasting with deep graph-evolution learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44 (9): 5368- 5384
|
8 |
SHAO Z, ZHANG Z, WANG F, et al. Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting [C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining . Washington DC: ACM, 2022: 1567–1577.
|
9 |
WU Z, PAN S, LONG G, et al. Connecting the dots: multivariate time series forecasting with graph neural networks [C]/ / Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York: ACM, 2020: 753–763.
|
10 |
LI Z L, ZHANG G W, YU J, et al Dynamic graph structure learning for multivariate time series forecasting[J]. Pattern Recognition, 2023, 138: 109423
doi: 10.1016/j.patcog.2023.109423
|
11 |
ZHANG D, XIAO F Dynamic auto-structuring graph neural network: a joint learning framework for origin-destination demand prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35 (4): 3699- 3711
|
12 |
ZHANG G P Time series forecasting using a hybrid arima and neural network model[J]. Neurocomputing, 2003, 50: 159- 175
doi: 10.1016/S0925-2312(01)00702-0
|
13 |
ROBERTS S, OSBORNE M, EBDEN M, et al Gaussian processes for time-series modelling[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 371 (1984): 20110550
doi: 10.1098/rsta.2011.0550
|
14 |
TORRES J F, HADJOUT D, SEBAA A, et al Deep learning for time series forecasting: a survey[J]. Big Data, 2021, 9 (1): 3- 21
doi: 10.1089/big.2020.0159
|
15 |
SEN R, YU H F, DHILLON I. Think globally, act locally: a deep neural network approach to high-dimensional time series forecasting [C]// Advances in Neural Information Processing Systems . Vancouver: MIT Press, 2019: 32.
|
16 |
SHIH S Y, SUN F K, LEE H Y Temporal pattern attention for multivariate time series forecasting[J]. Machine Learning, 2019, 108: 1421- 1441
doi: 10.1007/s10994-019-05815-0
|
17 |
JIN W, MA Y, LIU X, et al. Graph structure learning for robust graph neural networks [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York: ACM, 2020: 66–74.
|
18 |
WANG Z, FAN J, WU H, et al Representing multi-view time-series graph structures for multivariate long-term time-series forecasting[J]. IEEE Transactions on Artificial Intelligence, 2024, 5 (6): 2651- 2662
|
19 |
TIAN H, ZHENG X, ZHAO K, et al Inductive representation learning on dynamic stock co-movement graphs for stock predictions[J]. INFORMS Journal on Computing, 2022, 34 (4): 1940- 1957
doi: 10.1287/ijoc.2022.1172
|
20 |
SRIRAMULU A, FOURRIER N, BERGMEIR C Adaptive dependency learning graph neural networks[J]. Information Sciences, 2023, 625: 700- 714
doi: 10.1016/j.ins.2022.12.086
|
21 |
PAREJA A, DOMENICONI G, CHEN J, et al. Evolvegcn: evolving graph convolutional networks for dynamic graphs [C]// Proceedings of the AAAI Conference on Artificial Intelligence . New York: AAAI, 2020(34): 5363–5370.
|
22 |
XIE Y, ZHANG Y, GONG M, et al Mgat: multi-view graph attention networks[J]. Neural Networks, 2020, 132: 180- 189
doi: 10.1016/j.neunet.2020.08.021
|
23 |
HSU Y L, TSAI Y C, LI C T Fingat: financial graph attention networks for recommending top-k profitable stocks[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35 (1): 469- 481
|
24 |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [C]// International Conference on Learning Representations . Kigali: ICLR, 2018.
|
25 |
CHEN Y, SEGOVIA I, GEL Y R. Z-gcnets: time zigzags at graph convolutional networks for time series forecasting [C]// International Conference on Machine Learning . [s.l.]: PMLR, 2021: 1684–1694.
|
26 |
SKARDING J, GABRYS B, MUSIAL K Foundations and modeling of dynamic networks using dynamic graph neural networks: a survey[J]. IEEE Access, 2021, 9: 7914- 79168
|
27 |
YU Y, SI X, HU C, et al A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31 (7): 1235- 1270
doi: 10.1162/neco_a_01199
|
28 |
BAI L, YAO L, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting [C]// Advances in Neural Information Processing Systems . [s.l.]: MIT Press, 2020, 33: 17804–17815.
|
29 |
CAO D, WANG Y, DUAN J, et al. Spectral temporal graph neural network for multivariate time-series forecasting [C]// Advances in Neural Information Processing Systems . [s.l.]: MIT Press, 2020, 33: 17766–17778.
|
30 |
LIU Y, YANG L, YOU K, et al Graph learning based on spatiotemporal smoothness for time-varying graph signal[J]. IEEE Access, 2019, 7: 62372- 62386
doi: 10.1109/ACCESS.2019.2916567
|
31 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Advances in Neural Information Processing Systems . Long Beach: MIT Press, 2017: 30.
|
32 |
WU Z, PAN S, LONG G, et al. Graph wavenet for deep spatial-temporal graph modeling [C]// Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence . Macao: Morgan Kaufmann, 2019: 1907–1913.
|
33 |
LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting [C]// International Conference on Learning Representations . Vancouver: ICLR, 2018.
|
34 |
LAI G, CHANG W C, YANG Y, et al. Modeling long-and short-term temporal patterns with deep neural networks [C]// The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval . Ann Arbor: ACM, 2018: 95–104.
|
35 |
ZIVOT E, WANG J. Vector autoregressive models for multivariate time series [M]// Modeling financial time series with S-PLUS ® . Berlin: Springer, 2006: 385–429.
|
36 |
HUANG S, WANG D, WU X, et al. Dsanet: dual self-attention network for multivariate time series forecasting [C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management . Beijing: ACM, 2019: 2129–2132.
|
37 |
YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence . Stockholm: Morgan Kaufmann, 2018: 3634–3640.
|
38 |
GUO S, LIN Y, FENG N, et al. Attention based spatialtemporal graph convolutional networks for traffic flow forecasting [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Honolulu: AAAI, 2019(33): 922–929.
|
39 |
SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting [C]// Proceedings of the AAAI Conference on Artificial Intelligence . New York: AAAI, 2020(34): 914–921.
|
40 |
RASUL K, SEWARD C, SCHUSTER I, et al. Autoregressive denoising diffusion models for multivariate probabilistic time series forecasting [C]// International Conference on Machine Learning . [s.l.]: PMLR, 2021: 8857–8868.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|