机械工程、能源工程 |
|
|
|
|
超临界CO2布雷顿循环耦合有机闪蒸循环的性能分析及优化 |
余廷芳( ),张艮离,周嘉鹏,汤一村*( ) |
南昌大学 先进制造学院,江西 南昌 330031 |
|
Performance analysis and optimization of supercritical CO2 Brayton cycle coupled with organic flash cycle |
Tingfang YU( ),Genli ZHANG,Jiapeng ZHOU,Yicun TANG*( ) |
School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China |
引用本文:
余廷芳,张艮离,周嘉鹏,汤一村. 超临界CO2布雷顿循环耦合有机闪蒸循环的性能分析及优化[J]. 浙江大学学报(工学版), 2025, 59(1): 130-140.
Tingfang YU,Genli ZHANG,Jiapeng ZHOU,Yicun TANG. Performance analysis and optimization of supercritical CO2 Brayton cycle coupled with organic flash cycle. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 130-140.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.013
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I1/130
|
1 |
KIM S, CHO Y, KIM M S, et al Characteristics and optimization of supercritical CO2 recompression power cycle and the influence of pinch point temperature difference of recuperators[J]. Energy, 2018, 147: 1216- 1226
doi: 10.1016/j.energy.2017.12.161
|
2 |
CHENG W L, HUANG W X, NIAN Y L Global parameter optimization and criterion formula of supercritical carbon dioxide Brayton cycle with recompression[J]. Energy Conversion and Management, 2017, 150: 669- 677
doi: 10.1016/j.enconman.2017.08.055
|
3 |
SHARMA O P, KAUSHIK S C, MANJUNATH K Thermodynamic analysis and optimization of a supercritical CO2 regenerative recompression Brayton cycle coupled with a marine gas turbine for shipboard waste heat recovery[J]. Thermal Science and Engineering Progress, 2017, 3: 62- 74
doi: 10.1016/j.tsep.2017.06.004
|
4 |
PARK S H, KIM J Y, YOON M K, et al Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle[J]. Applied Thermal Engineering, 2018, 130: 611- 623
doi: 10.1016/j.applthermaleng.2017.10.145
|
5 |
REZNICEK E P, HINZE J F, NELLIS G F, et al Simulation of the supercritical CO2 recompression Brayton power cycle with a high-temperature regenerator[J]. Energy Conversion and Management, 2021, 229: 113678
doi: 10.1016/j.enconman.2020.113678
|
6 |
MOHAMMED R H, ALSAGRI A S, WANG X L Performance improvement of supercritical carbon dioxide power cycles through its integration with bottoming heat recovery cycles and advanced heat exchanger design: a review[J]. International Journal of Energy Research, 2020, 44 (9): 7108- 7135
doi: 10.1002/er.5319
|
7 |
曹宇, 王治红, 马宁, 等 超临界二氧化碳布雷顿/有机朗肯循环联合系统的热力学特性[J]. 热能动力工程, 2020, 35 (4): 9- 15 CAO Yu, WANG Zhihong, MA Ning, et al Thermodynamic properties of supercritical CO2 Brayton/organic Rankine cycle combined system[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35 (4): 9- 15
|
8 |
BESARATI S M, GOSWAMI D Y Analysis of advanced supercritical carbon dioxide power cycle with a bottoming cycle for concentrating solar power applications[J]. Journal of Solar Energy Engineering, 2014, 136 (1): 010904
doi: 10.1115/1.4025700
|
9 |
WANG K, HE Y L Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling[J]. Energy Conversion and Management, 2017, 135: 336- 350
doi: 10.1016/j.enconman.2016.12.085
|
10 |
KIM K H, PEREZ-BLANCO H Performance analysis of a combined organic rankine cycle and vapor compression cycle for power and refrigeration cogeneration[J]. Applied Thermal Engineering, 2015, 91: 964- 974
doi: 10.1016/j.applthermaleng.2015.04.062
|
11 |
阎增范, 张云贺, 孙文强 工业余热有机闪蒸循环回收方案及火用性能分析[J]. 冶金能源, 2021, 40 (5): 48- 52 YAN Zengfan, ZHANG Yunhe, SUN Wenqiang Industrial waste heat organic flash cycle recovery scheme and exergy performance analysis[J]. Energy for Metallurgical Industry, 2021, 40 (5): 48- 52
|
12 |
HO T, MAO S S, GREIF R Comparison of the organic flash cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy[J]. Energy, 2012, 42 (1): 213- 223
doi: 10.1016/j.energy.2012.03.067
|
13 |
QUE Y, HU Z M, REN S, et al Thermodynamic analysis of a combined recompression supercritical carbon dioxide Brayton cycle with an organic flash cycle for hybrid solar-geothermal energies power generation[J]. Frontiers in Energy Research, 2022, 10: 924134
doi: 10.3389/fenrg.2022.924134
|
14 |
HAN C H, KIM K H Exergetical analysis of organic flash cycle with two-phase expander for recovery of finite thermal reservoirs[J]. Journal of Thermal Science, 2014, 23: 572- 579
doi: 10.1007/s11630-014-0743-1
|
15 |
MAHMOUDI S M S, SARDROUD R G, SADEGHI M, et al Integration of supercritical CO2 recompression Brayton cycle with organic Rankine/flash and Kalina cycles: thermoeconomic comparison[J]. Sustainability, 2022, 14 (14): 8769
doi: 10.3390/su14148769
|
16 |
MONDAL S, DE S Waste heat recovery through organic flash cycle (OFC) using R245fa–R600 mixture as the working fluid[J]. Clean Technologies and Environmental Policy, 2019, 21: 1575- 1586
doi: 10.1007/s10098-019-01724-x
|
17 |
曹春辉, 李惟毅 夹点对超临界二氧化碳布雷顿再压缩循环性能的影响[J]. 化工进展, 2017, 36 (11): 3986- 3992 CAO Chunhui, LI Weiyi Effect of pinch point on thermal and exergetic performance of supercritical carbon dioxide Brayton recompression cycle[J]. Chemical Industry and Engineering Progress, 2017, 36 (11): 3986- 3992
|
18 |
WU C, WANG S S, LI J Exergoeconomic analysis and optimization of a combined supercritical carbon dioxide recompression Brayton/organic flash cycle for nuclear power plants[J]. Energy Conversion and Management, 2018, 171: 936- 952
doi: 10.1016/j.enconman.2018.06.041
|
19 |
MOHAMMADI K, MCGOWAN J G Thermoeconomic analysis of multi-stage recuperative Brayton cycles: part ii–waste energy recovery using CO2 and organic Rankine power cycles[J]. Energy Conversion and Management, 2019, 185: 920- 934
doi: 10.1016/j.enconman.2019.01.091
|
20 |
MONDEJAR M E, ANDREASEN J G, PIEROBON L, et al A review of the use of organic Rankine cycle power systems for maritime applications[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 126- 151
doi: 10.1016/j.rser.2018.03.074
|
21 |
FENG Y M, DU Z Q, SHREKA M, et al Thermodynamic analysis and performance optimization of the supercritical carbon dioxide Brayton cycle combined with the Kalina cycle for waste heat recovery from a marine low-speed diesel engine[J]. Energy Conversion and Management, 2020, 206: 112483
doi: 10.1016/j.enconman.2020.112483
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|