Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (1): 130-140    DOI: 10.3785/j.issn.1008-973X.2025.01.013
机械工程、能源工程     
超临界CO2布雷顿循环耦合有机闪蒸循环的性能分析及优化
余廷芳(),张艮离,周嘉鹏,汤一村*()
南昌大学 先进制造学院,江西 南昌 330031
Performance analysis and optimization of supercritical CO2 Brayton cycle coupled with organic flash cycle
Tingfang YU(),Genli ZHANG,Jiapeng ZHOU,Yicun TANG*()
School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
 全文: PDF(1121 KB)   HTML
摘要:

为了提高超临界CO2再压缩布雷顿循环(SCRBC)的热效率,在SCRBC余热端耦合有机闪蒸循环(OFC)作为低温余热利用的底循环,建立基于太阳能塔的SCRBC/OFC联合循环. 在设定条件下,进行联合循环的主要参数(如分流比、顶循环透平入口压力和温度、透平效率、闪蒸温度和冷凝温度)对系统热力性能影响的参数分析和?分析. 参数分析结果表明,在不同的顶循环透平入口压力和温度下存在最佳分流比,该分流比随透平入口压力的提高而上升;系统热效率随着冷凝温度增加而降低,随闪蒸温度的增加先增后降. ?损分析结果表明,在给定的条件下,印刷电路板式换热器(PCHE)?损失最大,之后依次为SCRBC透平、预冷器、回热器. 采用多目标优化方法得到兼顾系统热力性能和单位投资成本的Pareto解集,为工程设计方案提供了最优折中解作为参考. 相比优化前的SCRBC,优化后SCRBC/OFC使联合循环的热效率提高了12.5%.

关键词: 热力循环超临界CO2 再压缩布雷顿循环有机闪蒸循环热力性能分析多目标优化    
Abstract:

In order to improve the thermal efficiency of the supercritical CO2 recompression Brayton cycle (SCRBC), an organic flash cycle (OFC) was coupled at the waste heat end of SCRBC as the bottom cycle for low-temperature waste heat utilization, and a solar tower-based SCRBC/OFC combined cycle was established. Under the set conditions, parameter analysis and exergy analysis were conducted on the effects of the main parameters of the combined cycle such as the split ratio, top-cycle turbine inlet pressure and temperature, turbine efficiency, flash temperature, and condensation temperature on the thermal performance of the system. Parameter analysis results show that there is an optimal split ratio at different top-cycle turbine inlet pressures and temperatures, and the optimal split ratio increases with the increase of turbine inlet pressure. The thermal efficiency of the system decreases with the increase of condensation temperature, and as the flash temperature increases, the thermal efficiency first increases and then decreases. The exergy loss analysis shows that under the given condition, the printed circuit heat exchanger (PCHE) has the highest exergy loss, followed by the SCRBC turbine, precooler, and reheater. A multi-objective optimization method was used to obtain a Pareto solution set that takes both system thermal performance and unit investment cost into consideration, and the optimal compromise solution was provided as a reference for engineering design schemes. The optimized SCRBC/OFC improves the thermal efficiency of the combined cycle by 12.5% compared to the unoptimized SCRBC.

Key words: thermal cycle    supercritical CO2 recompression Brayton cycle    organic flash cycle    thermal performance analysis    multi-objective optimization
收稿日期: 2023-11-30 出版日期: 2025-01-18
CLC:  TK 11  
基金资助: 国家自然科学基金资助项目(52166009).
通讯作者: 汤一村     E-mail: yutingfang@ncu.edu.cn;412400220134@email.ncu.edu.cn
作者简介: 余廷芳(1974—),男,教授,博士,从事新能源发电系统性能分析及优化研究. orcid.org/0000-0003-0313-4955. E-mail:yutingfang@ncu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
余廷芳
张艮离
周嘉鹏
汤一村

引用本文:

余廷芳,张艮离,周嘉鹏,汤一村. 超临界CO2布雷顿循环耦合有机闪蒸循环的性能分析及优化[J]. 浙江大学学报(工学版), 2025, 59(1): 130-140.

Tingfang YU,Genli ZHANG,Jiapeng ZHOU,Yicun TANG. Performance analysis and optimization of supercritical CO2 Brayton cycle coupled with organic flash cycle. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 130-140.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.013        https://www.zjujournals.com/eng/CN/Y2025/V59/I1/130

图 1  超临界CO2再压缩布雷顿循环/有机闪蒸循环联合系统示意图
图 2  不同循环系统的温熵图
循环参数数值
环境温度t0/℃25
环境压力p0/MPa0.101 325
主压缩机入口压力p8/MPa7.8
顶循环压比rp2.6
透平入口温度t3/℃500
主压缩机入口温度t8/℃36
换热器夹点温差Δte/℃8
其他回热器夹点温差Δtoth/℃10
闪蒸温度t04/℃80
冷凝温度t01/℃40
熔融盐进口温度t1/℃680
透平等熵效率ηT0.85
主再压缩机等熵效率ηMCηRC0.85
膨胀机等熵效率ηb,T0.8
泵等熵效率ηP0.8
CO2质量流量qm,c/ (kg·s?1)480
R600质量流量qm,o/ (kg·s?1)70
预冷器冷却水入口温度t12/℃15
冷凝器冷却水入口温度t010/℃15
预冷器冷却水入口压力p12/MPa1.013 25
冷凝器冷却水入口压力p010/MPa1.013 25
预冷器冷却水质量流量qm,w1/(kg·s?1)480
冷凝器冷却水质量流量qm,w2/(kg·s?1)720
表 1  超临界CO2再压缩布雷顿循环/有机闪蒸循环联合系统的设定参数[17-18]
循环X文献参数模型计算参数$\delta $/%
SCRBC[17]0.63ηth=35.47%ηth=35.52%0.14
0.70ηth=37.69%ηth=37.68%0.03
0.75ηth=37.02%ηth=36.89%0.35
OFC[18]
(R245fa)
p03=1.549 MPap03=1.55 MPa0.06
t06=51.18 ℃t06=51.18 ℃0
t09=40 ℃t09=40 ℃0
ηth=3.73%ηth=3.73%0
表 2  超临界CO2再压缩布雷顿循环和有机闪蒸循环的模型验证
图 3  所提系统多个出口温度随分流比的变化
图 4  不同系统热效率随分流比的变化
图 5  所提系统各个部件㶲损占比
图 6  透平入口压力对所提系统热效率的影响
图 7  透平入口温度对所提系统热效率的影响
图 8  透平效率对不同系统热效率的影响
图 9  透平入口压力、温度对不同系统热效率的影响
图 10  闪蒸温度和冷凝温度对不同系统热效率的影响
图 11  超临界CO2再压缩布雷顿循环/有机闪蒸循环联合系统Pareto前沿集
t3/℃p3/kPat01/℃Xt04/℃$\eta $exy1(x)y2(x)
596.061723682.993543.10320.714177.95180.66941.49380.0325
595.514724103.048643.22390.712575.11200.67011.49230.0329
594.718523707.563844.04170.771777.60670.65411.52890.0265
596.443324353.048843.22300.725578.40640.66711.49900.0313
595.298924095.083144.51590.737976.58060.66321.50790.0291
594.714025051.988344.71540.801078.57960.64891.54100.0248
593.961824737.754644.69610.864978.60530.63601.57230.0225
596.288424276.547843.83590.771178.35470.65511.52640.0267
595.345324077.457043.97610.726177.49770.66621.50090.0306
595.229024287.153844.38910.789279.47720.65041.53750.0254
594.743624375.706843.67610.746777.29850.66071.51360.0288
595.194124840.369344.33040.758977.89180.65941.51640.0278
594.685424736.186444.96710.870478.88520.63551.57360.0222
594.960422738.146243.20600.712473.37190.66801.49710.0320
576.362620829.382944.54180.894679.12700.60751.64600.0218
表 3  Pareto有效解组成的Pareto前沿集
1 KIM S, CHO Y, KIM M S, et al Characteristics and optimization of supercritical CO2 recompression power cycle and the influence of pinch point temperature difference of recuperators[J]. Energy, 2018, 147: 1216- 1226
doi: 10.1016/j.energy.2017.12.161
2 CHENG W L, HUANG W X, NIAN Y L Global parameter optimization and criterion formula of supercritical carbon dioxide Brayton cycle with recompression[J]. Energy Conversion and Management, 2017, 150: 669- 677
doi: 10.1016/j.enconman.2017.08.055
3 SHARMA O P, KAUSHIK S C, MANJUNATH K Thermodynamic analysis and optimization of a supercritical CO2 regenerative recompression Brayton cycle coupled with a marine gas turbine for shipboard waste heat recovery[J]. Thermal Science and Engineering Progress, 2017, 3: 62- 74
doi: 10.1016/j.tsep.2017.06.004
4 PARK S H, KIM J Y, YOON M K, et al Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle[J]. Applied Thermal Engineering, 2018, 130: 611- 623
doi: 10.1016/j.applthermaleng.2017.10.145
5 REZNICEK E P, HINZE J F, NELLIS G F, et al Simulation of the supercritical CO2 recompression Brayton power cycle with a high-temperature regenerator[J]. Energy Conversion and Management, 2021, 229: 113678
doi: 10.1016/j.enconman.2020.113678
6 MOHAMMED R H, ALSAGRI A S, WANG X L Performance improvement of supercritical carbon dioxide power cycles through its integration with bottoming heat recovery cycles and advanced heat exchanger design: a review[J]. International Journal of Energy Research, 2020, 44 (9): 7108- 7135
doi: 10.1002/er.5319
7 曹宇, 王治红, 马宁, 等 超临界二氧化碳布雷顿/有机朗肯循环联合系统的热力学特性[J]. 热能动力工程, 2020, 35 (4): 9- 15
CAO Yu, WANG Zhihong, MA Ning, et al Thermodynamic properties of supercritical CO2 Brayton/organic Rankine cycle combined system[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35 (4): 9- 15
8 BESARATI S M, GOSWAMI D Y Analysis of advanced supercritical carbon dioxide power cycle with a bottoming cycle for concentrating solar power applications[J]. Journal of Solar Energy Engineering, 2014, 136 (1): 010904
doi: 10.1115/1.4025700
9 WANG K, HE Y L Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling[J]. Energy Conversion and Management, 2017, 135: 336- 350
doi: 10.1016/j.enconman.2016.12.085
10 KIM K H, PEREZ-BLANCO H Performance analysis of a combined organic rankine cycle and vapor compression cycle for power and refrigeration cogeneration[J]. Applied Thermal Engineering, 2015, 91: 964- 974
doi: 10.1016/j.applthermaleng.2015.04.062
11 阎增范, 张云贺, 孙文强 工业余热有机闪蒸循环回收方案及火用性能分析[J]. 冶金能源, 2021, 40 (5): 48- 52
YAN Zengfan, ZHANG Yunhe, SUN Wenqiang Industrial waste heat organic flash cycle recovery scheme and exergy performance analysis[J]. Energy for Metallurgical Industry, 2021, 40 (5): 48- 52
12 HO T, MAO S S, GREIF R Comparison of the organic flash cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy[J]. Energy, 2012, 42 (1): 213- 223
doi: 10.1016/j.energy.2012.03.067
13 QUE Y, HU Z M, REN S, et al Thermodynamic analysis of a combined recompression supercritical carbon dioxide Brayton cycle with an organic flash cycle for hybrid solar-geothermal energies power generation[J]. Frontiers in Energy Research, 2022, 10: 924134
doi: 10.3389/fenrg.2022.924134
14 HAN C H, KIM K H Exergetical analysis of organic flash cycle with two-phase expander for recovery of finite thermal reservoirs[J]. Journal of Thermal Science, 2014, 23: 572- 579
doi: 10.1007/s11630-014-0743-1
15 MAHMOUDI S M S, SARDROUD R G, SADEGHI M, et al Integration of supercritical CO2 recompression Brayton cycle with organic Rankine/flash and Kalina cycles: thermoeconomic comparison[J]. Sustainability, 2022, 14 (14): 8769
doi: 10.3390/su14148769
16 MONDAL S, DE S Waste heat recovery through organic flash cycle (OFC) using R245fa–R600 mixture as the working fluid[J]. Clean Technologies and Environmental Policy, 2019, 21: 1575- 1586
doi: 10.1007/s10098-019-01724-x
17 曹春辉, 李惟毅 夹点对超临界二氧化碳布雷顿再压缩循环性能的影响[J]. 化工进展, 2017, 36 (11): 3986- 3992
CAO Chunhui, LI Weiyi Effect of pinch point on thermal and exergetic performance of supercritical carbon dioxide Brayton recompression cycle[J]. Chemical Industry and Engineering Progress, 2017, 36 (11): 3986- 3992
18 WU C, WANG S S, LI J Exergoeconomic analysis and optimization of a combined supercritical carbon dioxide recompression Brayton/organic flash cycle for nuclear power plants[J]. Energy Conversion and Management, 2018, 171: 936- 952
doi: 10.1016/j.enconman.2018.06.041
19 MOHAMMADI K, MCGOWAN J G Thermoeconomic analysis of multi-stage recuperative Brayton cycles: part ii–waste energy recovery using CO2 and organic Rankine power cycles[J]. Energy Conversion and Management, 2019, 185: 920- 934
doi: 10.1016/j.enconman.2019.01.091
20 MONDEJAR M E, ANDREASEN J G, PIEROBON L, et al A review of the use of organic Rankine cycle power systems for maritime applications[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 126- 151
doi: 10.1016/j.rser.2018.03.074
21 FENG Y M, DU Z Q, SHREKA M, et al Thermodynamic analysis and performance optimization of the supercritical carbon dioxide Brayton cycle combined with the Kalina cycle for waste heat recovery from a marine low-speed diesel engine[J]. Energy Conversion and Management, 2020, 206: 112483
doi: 10.1016/j.enconman.2020.112483
[1] 叶倩琳,王万良,王铮. 多目标粒子群优化算法及其应用研究综述[J]. 浙江大学学报(工学版), 2024, 58(6): 1107-1120.
[2] 詹燕,陈洁雅,江伟光,鲁建厦,汤洪涛,宋新禹,许丽丽,刘赛淼. 基于改进NSGA-Ⅱ的多目标车间物料配送方法[J]. 浙江大学学报(工学版), 2024, 58(12): 2510-2519.
[3] 余廷芳,方澳,李龙飞,徐勋. 槽式太阳能辅助燃煤发电系统集成方式[J]. 浙江大学学报(工学版), 2024, 58(11): 2330-2337.
[4] 曹晓彦,于敏,周瑾,王运志. 可调旋转式流体阻尼器参数多目标优化设计[J]. 浙江大学学报(工学版), 2023, 57(7): 1439-1449.
[5] 余廷芳,宋凌. 超临界CO2布雷顿循环余热回收系统性能分析与优化[J]. 浙江大学学报(工学版), 2023, 57(2): 404-414.
[6] 王万良,陈忠馗,吴菲,王铮,俞梦娇. 基于个体预测的动态多目标优化算法[J]. 浙江大学学报(工学版), 2023, 57(11): 2133-2146.
[7] 王万良,金雅文,陈嘉诚,李国庆,胡明志,董建杭. 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报(工学版), 2022, 56(3): 531-541.
[8] 徐钧恒,杨晓钧,李兵. 基于交叉簧片式铰链的变弯度机翼机构设计[J]. 浙江大学学报(工学版), 2022, 56(3): 444-451, 509.
[9] 邓齐林,鲁娟,陈勇辉,冯健,廖小平,马俊燕. 基于深度强化学习的数控铣削加工参数优化方法[J]. 浙江大学学报(工学版), 2022, 56(11): 2145-2155.
[10] 陈俊杰,李洪均,曹张华. 性能感知的核心网控制面资源分配算法[J]. 浙江大学学报(工学版), 2021, 55(9): 1782-1787.
[11] 李笑竹,王维庆. 区域综合能源系统两阶段鲁棒博弈优化调度[J]. 浙江大学学报(工学版), 2021, 55(1): 177-188.
[12] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705.
[13] 黄华,邓文强,李源,郭润兰. 基于空间动力学优化的机床结构件质量匹配设计[J]. 浙江大学学报(工学版), 2020, 54(10): 2009-2017.
[14] 童水光,赵航,刘会琴,童哲铭,余跃,唐宁,吴伟杰,李进富,从飞云,张昊,王寅华,郝国帅. 中开多级离心泵效率优化计算方法[J]. 浙江大学学报(工学版), 2019, 53(5): 988-996.
[15] 毕晓君, 王朝. 基于超平面投影的高维多目标进化算法[J]. 浙江大学学报(工学版), 2018, 52(7): 1284-1293.