Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (1): 141-151    DOI: 10.3785/j.issn.1008-973X.2025.01.014
机械工程、能源工程     
分数阶磁耦合谐振双向无线电能传输系统参数优化
李若琼1(),翁源1,李欣2,*()
1. 兰州交通大学 自动化与电气工程学院,甘肃 兰州 730070
2. 兰州交通大学 新能源与动力工程学院,甘肃 兰州 730070
Parameter optimization of fractional-order magnetically-coupled resonant bidirectional wireless power transfer system
Ruoqiong LI1(),Yuan WENG1,Xin LI2,*()
1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2. School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
 全文: PDF(1234 KB)   HTML
摘要:

磁耦合谐振双向无线电能传输(BD-WPT)系统的参数多,导致系统影响程度不一致和参数配置困难,为此结合灰色关联度分析(GRA)和多目标粒子群优化(MOPSO)算法提出分数阶磁耦合谐振BD-WPT系统多目标参数优化方法. 在分析系统传输特性和线圈参数解析式的基础上,采用GRA进行系统各个参数的影响评估,确定了5个核心参数. 为了提高系统传输效率和线圈功率密度,采用MOPSO算法优化系统参数,结果表明通过GRA有选择性地优化核心参数,可使算法输出的解集优于未采用GRA的解集. 结合电动汽车实际需求,选取最优解用于BD-WPT系统的设计参考. 仿真结果显示,相校于国标参数对称系统,BD-WPT系数的传输效率提高了4.5个百分点,线圈功率密度提高了0.42 kW/m2.

关键词: 双向无线电能传输(BD-WPT)磁耦合谐振灰色关联度分析(GRA)多目标优化多目标粒子群优化(MOPSO)算法    
Abstract:

The magnetically-coupled resonant bidirectional wireless power transfer (BD-WPT) system has many parameters, and the problems of inconsistent influence on the system and difficult parameter configuration were caused by the parameters. Combining the grey relation analysis (GRA) with the multi-objective particle swarm optimization (MOPSO) algorithm, a multi-objective parameter optimization method for fractional-order magnetically-coupled resonant BD-WPT system was proposed. Based on the analysis of the system’s transmission characteristics and coil parameter analytical expressions, the GRA was employed to assess the influence of each system parameter and identify five core parameters. With the aim of enhancing the system’s transmission efficiency and coil power density, the MOPSO algorithm was utilized to optimize the system parameters. Results showed that the GRA allowed for the selective optimization of the core parameters so that the solution set output by the algorithm is better than the solution set without GRA. In light of the actual requirements of electric vehicles, the optimal solution was chosen as a reference for the design of the BD-WPT system. The simulation results indicated that compared with the national standard parameter symmetric system, the transmission efficiency of the BD-WPT system had increased by 4.5 percentage points, and the coil power density had risen by 0.42 kW/m2.

Key words: bidirectional wireless power transfer (BD-WPT)    magnetically-coupled resonant    grey relation analysis (GRA)    multi-objective optimization    multi-objective particle swarm optimization (MOPSO) algorithm
收稿日期: 2023-11-29 出版日期: 2025-01-18
CLC:  TP 724  
基金资助: 国家自然科学基金资助项目(51767015);甘肃省科技计划甘肃省自然科学基金重点项目(22JR5RA317);甘肃省高等学校产业支撑计划项目(2023CYZC-39).
通讯作者: 李欣     E-mail: liruoqiong26@163.com;lxfp167@163.com
作者简介: 李若琼(1979—),女,教授,从事新型电能变换技术和电工理论与新技术研究. orcid.org/0000-0003-4452-8256. E-mail:liruoqiong26@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李若琼
翁源
李欣

引用本文:

李若琼,翁源,李欣. 分数阶磁耦合谐振双向无线电能传输系统参数优化[J]. 浙江大学学报(工学版), 2025, 59(1): 141-151.

Ruoqiong LI,Yuan WENG,Xin LI. Parameter optimization of fractional-order magnetically-coupled resonant bidirectional wireless power transfer system. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 141-151.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.014        https://www.zjujournals.com/eng/CN/Y2025/V59/I1/141

图 1  分数阶磁耦合谐振双向无线电能传输系统结构图
图 2  分数阶磁耦合谐振双向无线电能传输系统等效电路
图 3  非紧密缠绕平面圆形螺线圈等效模型
图 4  平面同心圆环载流线圈间互感模型
图 5  线圈互感计算模型
系统η/%f/kHzLf/μHCf/nFLt/μHRM/μHr1/mh/mN
189.8685.52017443.80.3411.300.280.1511
287.3880.01526415.00.154.080.200.107
389.0483.51820429.00.247.610.250.139
492.1587.02513471.00.4720.000.350.1712
592.9090.030104106.00.6329.300.400.2014
表 1  分数阶磁耦合谐振双向无线电传输系统的参数
系统ηfLfCfLtRMr1hN
11.001.001.001.001.001.001.001.001.001.00
20.970.940.751.520.340.430.360.710.670.64
30.990.970.901.180.660.710.670.890.870.82
41.031.021.250.771.621.351.761.251.131.09
51.031.051.500.602.431.842.591.431.331.27
表 2  分数阶磁耦合谐振双向无线电传输系统的参数归一化处理结果
系统$\xi $
fLfCfLtRMr1hN
11.001.001.001.001.001.001.001.001.00
20.950.780.590.550.590.560.750.720.70
30.970.900.810.700.730.710.890.860.82
40.990.780.750.570.700.510.780.880.92
50.980.620.640.360.490.330.660.720.76
关联度0.980.810.760.640.700.620.820.840.84
表 3  分数阶磁耦合谐振双向无线电传输系统传输效率影响因素的灰色关联度及灰色关联度系数
图 6  系统参数多目标粒子群优化算法流程图
图 7  多目标粒子群优化算法的Pareto前沿解
图 8  采用灰色关联度分析前后的算法优化结果对比
f/HzLf/Hr1/mh/mNη/%ρ/(kW·m?2)
90 0002.98×10?50.450.101596.354.91
89 9832.02×10?50.440.101195.846.68
88 1183.28×10?50.430.10794.7110.47
90 0003.32×10?50.380.10592.9817.78
表 4  多目标粒子群优化算法结果中的部分前沿解
参数数值参数数值
f/kHz90N6
Lf/μH24.03Cα/(F·sα?1)1.798×10?7
r1/m0.44α1.008
h/m0.10Cf/nF130.4
R0.276η/%94.32
Lt/μH39.71ρ/(kW·m?2)12.35
表 5  多目标粒子群优化算法优化后的参数
图 9  双向无线电能传输系统开关信号波形
图 10  多目标粒子群优化算法优化的双向无线电能传输系统二次侧输出功率
图 11  多目标粒子群优化算法优化的双向无线电能传输系统线圈损耗功率
图 12  国标中参数对称的双向无线电能传输系统二次侧输出功率
图 13  国标中参数对称的双向无线电能传输系统线圈损耗功率
1 LI H Z, TAN L L, WANG R Y, et al Research and improvement of oscillation problems caused by active rectifier circuits in EV-WPT systems[J]. IEEE Transactions on Power Electronics, 2023, 38 (10): 13231- 13242
doi: 10.1109/TPEL.2023.3295841
2 陈志鑫, 张献, 沙琳, 等 基于频率调节的电动汽车无线充电互操作性提升方法研究[J]. 电工技术学报, 2023, 38 (5): 1237- 1247
CHEN Zhixin, ZHANG Xian, SHA Lin, et al Research on improving interoperability of electric vehicle wireless power transfer based on drequency adjustment[J]. Transactions of China Electrotechnical Society, 2023, 38 (5): 1237- 1247
3 范兴明, 贾二炬, 高琳琳, 等 基于目标参数最优的磁耦合谐振式无线能量传输系统频率特性分析及仿真验证[J]. 上海交通大学学报, 2020, 54 (4): 430- 440
FAN Xingming, JIA Erju, GAO Linlin, et al Analysis and simulation of frequency characteristic based on optimal objective parameter in magnetically-coupled resonant wireless power transfer system[J]. Journal of Shanghai Jiao Tong University, 2020, 54 (4): 430- 440
4 HOU Y J, FENG G W, LIU Z Z, et al Research on Dual-LCC MCRWPT system based on controlled rectifier[J]. Energy Reports, 2022, 8 (Suppl. 4): 823- 836
5 李欣, 徐积强 基于混杂自动机的双向ICPT系统建模及控制[J]. 电力自动化设备, 2022, 42 (4): 107- 113
LI Xin, XU Jiqiang Modeling and control of bidirectional ICPT system based on hybrid automata[J]. Electric Power Automation Equipment, 2022, 42 (4): 107- 113
6 SETH A K, SINGH M Resonant controller of single-stage off-board EV charger in G2V and V2G modes[J]. IET Power Electronics, 2020, 13 (5): 1086- 1092
doi: 10.1049/iet-pel.2019.1111
7 张波, 荣超, 江彦伟, 等 分数阶无线电能传输机理的提出及研究进展[J]. 电力系统自动化, 2022, 46 (4): 197- 207
ZHANG Bo, RONG Chao, JIANG Yanwei, et al Proposal process and research progress of fractional-order wireless power transfer mechanism[J]. Automation of Electric Power Systems, 2022, 46 (4): 197- 207
8 JIANG Y W, ZHANG B A fractional-order wireless power transfer system insensitive to resonant frequency[J]. IEEE Transactions on Power Electronics, 2020, 33 (5): 5496- 5505
9 李若琼, 翁源, 李欣 基于等效阻抗的分数阶RLCα串联谐振BD-WPT系统传输特性分析[J]. 云南大学学报: 自然科学版, 2024, 46 (3): 460- 468
LI Ruoqiong, WENG Yuan, LI Xin Analysis of transmission characteristics of fractional-order RLCα series resonant BD-WPT system based on equivalent impedance[J]. Journal of Yunnan University: Natural Sciences Edition, 2024, 46 (3): 460- 468
10 谢文燕, 陈为 基于组合补偿网络的抗偏移恒流输出无线电能传输系统研究[J]. 电工技术学报, 2022, 37 (6): 1495- 1512
XIE Wenyan, CHEN Wei Research on anti-offset constant-current output wireless power transfer system based on combined compensation network[J]. Transactions of China Electrotechnical Society, 2022, 37 (6): 1495- 1512
11 张艺明, 王辉, 沈志伟, 等 利用混合拓扑实现强抗偏移性能的紧凑型电动汽车无线充电系统[J]. 中国电机工程学报, 2022, 42 (8): 2979- 2986
ZHANG Yiming WANG Hui, SHEN Zhiwei, et al. Misalignment-tolerant compact electric vehicle wireless charging system by using hybrid topology[J]. Proceedings of the CSEE, 2022, 42 (8): 2979- 2986
12 曹娟, 张婉青, 徐年富, 等 平面圆形螺线圈电感参数计算[J]. 兵器装备工程学报, 2021, 42 (10): 86- 90
CAO Juan, ZHANG Wanqing, XU Nianfu, et al Calculation of inductance parameters of planar circular spiral coil[J]. Journal of Ordnance Equipment Engineering, 2021, 42 (10): 86- 90
13 QU X H, JING Y Y, HAN H D, et al Higher order compensation for inductive-power-transfer converters with constant-voltage or constant-current output combating transformer parameter constraints[J]. IEEE Transactions on Power Electronics, 2017, 32 (1): 394- 405
doi: 10.1109/TPEL.2016.2535376
14 马涛, 苏玉刚, 王子驰, 等 LCC-S型无线电能传输系统的磁耦合机构参数多目标优化技术[J]. 重庆大学学报, 2023, 46 (4): 52- 63
MA Tao, SU Yugang, WANG Zichi et al. Multi-objective optimization technology for parameters of magnetic coupler of LCC-S type MC-WPT system[J]. Journal of Chongqing University, 2023, 46 (4): 52- 63
15 蒋昭, 赵晋斌, 张俊伟, 等 基于DS-LCC拓扑抗偏移性的建模与优化[J]. 电力系统保护与控制, 2022, 50 (15): 99- 108
JIANG Zhao, ZHAO Jinbin, ZHANG Junwei, et al Modeling and optimization of anti-offset based on DS-LCC topology[J]. Power System Protection and Control, 2022, 50 (15): 99- 108
16 张云, 王丽芳, 郭彦杰, 等 基于NSGA-Ⅱ算法的无线充电系统磁耦合机构多目标优化[J]. 电工电能新技术, 2020, 39 (12): 28- 34
ZHANG Yun, WANG Lifang, GUO Yanjie, et al Multi-objective optimization of magnetic coupler for wireless power transfer system based on NSGA-II algorithm[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39 (12): 28- 34
17 刘旭, 宋翔昱, 原熙博, 等 一种利用可切换补偿电容的三线圈无线电能传输系统互感识别及效率优化方法[J]. 中国电机工程学报, 2022, 42 (22): 8309- 8320
LIU Xu, SONG Xiangyu, YUAN Xibo, et al A mutual inductance identification and efficiency optimization method for the three-coil wireless power transfer system by utilizing switchable compensation capacitor[J]. Proceedings of the CSEE, 2022, 42 (22): 8309- 8320
18 CHEN Y F, ZHANG H L, SHIN C S, et al An efficiency optimization-based asymmetric tuning method of double-sided LCC compensated WPT system for electric vehicles[J]. IEEE Transactions on Power Electronics, 2020, 35 (11): 11475- 11487
doi: 10.1109/TPEL.2020.2984712
19 童晓阳, 张绍迅 基于灰色关联度的配电网故障区段定位与类型识别方法[J]. 电力系统自动化, 2019, 43 (4): 113- 118
TONG Xiaoyang, ZHANG Shaoxun Grey relational degree based on fault section location and type recognition method for distribution network[J]. Automation of Electric Power Systems, 2019, 43 (4): 113- 118
20 张政, 张波 MCR-WPT系统高频逆变器综合性能的定量评价[J]. 电测与仪表, 2020, 57 (20): 134- 140
ZHANG Zheng, ZHANG Bo Quantitative evaluation of comprehensive performance of MCR-WPT system high frequency inverter[J]. Electrical Measurement and Instrumentation, 2020, 57 (20): 134- 140
21 靳夏. 移动式ICPT系统谐振补偿结构与参数优化研究[D]. 兰州: 兰州交通大学, 2019: 1–66.
JIN Xia. Research on resonance compensation structure and parameter optimization of mobile ICPT system [D]. Lanzhou: Lanzhou Jiaotong University, 2019: 1–66.
22 向利娟, 孙跃, 胡超, 等 基于AHP和FCE的IPTS电磁机构性能评价[J]. 中国电机工程学报, 2017, 37 (3): 848- 856
XIANG Lijuan, SUN Yue, HU Chao, et al Performance evaluation for magnetic couplers in IPTS using AHP and FCE[J]. Proceedings of the CSEE, 2017, 37 (3): 848- 856
23 GARCÍA-IZQUIERDO O, SANZ J F, VILLA J L, et al Optimal design of a Low-Cost SAE JA2954 compliant WPT system using NSGA-II[J]. Computers and Industrial Engineering, 2023, 184: 109536
doi: 10.1016/j.cie.2023.109536
24 李欣, 赵乐 计及信号与电能同步传输影响的ICPT系统谐振参数优化方法[J]. 电力自动化设备, 2020, 40 (8): 147- 153
LI Xin, ZHAO Le Resonance parameter optimization of ICPT system considering influence on synchronous transmission of signal and power energy[J]. Electric Power Automation Equipment, 2020, 40 (8): 147- 153
25 杨云虎, 梁大壮, 洪若飞, 等 遗传算法对三线圈无线电能传输系统参数优化[J]. 电机与控制学报, 2023, 27 (8): 122- 129
YANG Yunhu, LIANG Dazhuang, HONG Ruofei, et al Parameter optimization of three coils by genetic algorithm for wireless power transmission systems[J]. Electric Machines and Control, 2023, 27 (8): 122- 129
26 吴晓伟, 刘宏昭 约束型粒子群的LCC/S磁谐振耦合机构参数优化算法[J]. 机械科学与技术, 2022, 41 (1): 127- 133
WU Xiaowei, LIU Hongzhao Parameter optimization of LCC/S type magnetic resonance coupling mechanism with constrained particle swarm algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41 (1): 127- 133
27 李阳, 黄悦蓬, 刘雪莉, 等 动态无线电能传输系统多目标粒子群优化方法[J]. 电工电能新技术, 2022, 41 (8): 41- 50
LI Yang, HUANG Yuepeng, LIU Xueli et al. Multi-objective particle swarm optimization method for dynamic WPT system[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41 (8): 41- 50
[1] 余廷芳,张艮离,周嘉鹏,汤一村. 超临界CO2布雷顿循环耦合有机闪蒸循环的性能分析及优化[J]. 浙江大学学报(工学版), 2025, 59(1): 130-140.
[2] 叶倩琳,王万良,王铮. 多目标粒子群优化算法及其应用研究综述[J]. 浙江大学学报(工学版), 2024, 58(6): 1107-1120.
[3] 詹燕,陈洁雅,江伟光,鲁建厦,汤洪涛,宋新禹,许丽丽,刘赛淼. 基于改进NSGA-Ⅱ的多目标车间物料配送方法[J]. 浙江大学学报(工学版), 2024, 58(12): 2510-2519.
[4] 曹晓彦,于敏,周瑾,王运志. 可调旋转式流体阻尼器参数多目标优化设计[J]. 浙江大学学报(工学版), 2023, 57(7): 1439-1449.
[5] 余廷芳,宋凌. 超临界CO2布雷顿循环余热回收系统性能分析与优化[J]. 浙江大学学报(工学版), 2023, 57(2): 404-414.
[6] 王万良,陈忠馗,吴菲,王铮,俞梦娇. 基于个体预测的动态多目标优化算法[J]. 浙江大学学报(工学版), 2023, 57(11): 2133-2146.
[7] 王万良,金雅文,陈嘉诚,李国庆,胡明志,董建杭. 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报(工学版), 2022, 56(3): 531-541.
[8] 徐钧恒,杨晓钧,李兵. 基于交叉簧片式铰链的变弯度机翼机构设计[J]. 浙江大学学报(工学版), 2022, 56(3): 444-451, 509.
[9] 邓齐林,鲁娟,陈勇辉,冯健,廖小平,马俊燕. 基于深度强化学习的数控铣削加工参数优化方法[J]. 浙江大学学报(工学版), 2022, 56(11): 2145-2155.
[10] 陈俊杰,李洪均,曹张华. 性能感知的核心网控制面资源分配算法[J]. 浙江大学学报(工学版), 2021, 55(9): 1782-1787.
[11] 李笑竹,王维庆. 区域综合能源系统两阶段鲁棒博弈优化调度[J]. 浙江大学学报(工学版), 2021, 55(1): 177-188.
[12] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705.
[13] 黄华,邓文强,李源,郭润兰. 基于空间动力学优化的机床结构件质量匹配设计[J]. 浙江大学学报(工学版), 2020, 54(10): 2009-2017.
[14] 童水光,赵航,刘会琴,童哲铭,余跃,唐宁,吴伟杰,李进富,从飞云,张昊,王寅华,郝国帅. 中开多级离心泵效率优化计算方法[J]. 浙江大学学报(工学版), 2019, 53(5): 988-996.
[15] 毕晓君, 王朝. 基于超平面投影的高维多目标进化算法[J]. 浙江大学学报(工学版), 2018, 52(7): 1284-1293.