Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (8): 1598-1607    DOI: 10.3785/j.issn.1008-973X.2025.08.006
机械工程、能源工程     
改进候鸟算法求解可重入混流车间批量流调度
罗亚波(),喻少龙,张峰*(),李存荣
武汉理工大学 机电工程学院,湖北 武汉 430070
Improved migrating bird algorithm for re-entrant hybrid flowshop scheduling problem with lot streaming
Yabo LUO(),Shaolong YU,Feng ZHANG*(),Cunrong LI
School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
 全文: PDF(972 KB)   HTML
摘要:

鉴于阵列车间手工排产难以适应复杂多变的生产需求,构建可重入混合流水车间批量流调度问题(RHFSP-LS)模型,提出改进多目标候鸟优化算法进行求解. 设计基于非支配排序、加权总和与外部档案集的多目标候鸟优化算法. 利用Logistic混沌映射和NEH算法,提高了初始种群的质量. 提出“子批优先”+“批次优先”的解码策略,提升了算法对于特殊问题的求解能力. 提出基于个体年龄的邻域搜索,优化了种群的邻域搜索方向. 提出结合外部档案集的逃逸机制,提升了算法的全局搜索能力. 通过实验验证了所提策略及算法在解决RHFSP-LS上的有效性与优越性,保证了整体生产周期与各工艺批次交货期限的有效平衡.

关键词: 可重入混合流水车间批量流候鸟优化算法多目标优化生产调度    
Abstract:

A re-entrant hybrid flowshop scheduling problem with lot streaming (RHFSP-LS) model was constructed in view of the difficulty of manual scheduling in array workshops to adapt to complex and variable production demands. An improved multi-objective migrating birds optimization algorithm was proposed for solving the model. A multi-objective migrating birds optimization algorithm based on non-dominated sorting, weighted sum, and external archive set was designed. The quality of the initial population was improved by using Logistic chaotic mapping and the NEH algorithm. A "sub-lot priority" + "batch priority" decoding strategy was proposed to enhance the algorithm’s solving capacity for special problems. A neighborhood search based on individual age was introduced to optimize the population’s neighborhood search direction. An escape mechanism combined with an external archive set was proposed to enhance the algorithm’s global search capability. The proposed strategies and algorithms were experimentally verified for the effectiveness and superiority in solving RHFSP-LS, ensuring an effective balance between the overall production cycle and the delivery deadlines of each process batch.

Key words: re-entrant hybrid flowshop    lot streaming    migrating bird optimization algorithm    multi-objective optimization    production scheduling
收稿日期: 2024-09-25 出版日期: 2025-07-28
:  TH 166  
基金资助: 国家自然科学基金资助项目(51875430).
通讯作者: 张峰     E-mail: luoyabo@whut.edu.cn;zhangfengie@whut.edu.cn
作者简介: 罗亚波(1973—),男,教授,博导,从事复杂系统建模与优化、仿生算法、机器视觉的研究. orcid.org/0000-0001-5351-779X. E-mail: luoyabo@whut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
罗亚波
喻少龙
张峰
李存荣

引用本文:

罗亚波,喻少龙,张峰,李存荣. 改进候鸟算法求解可重入混流车间批量流调度[J]. 浙江大学学报(工学版), 2025, 59(8): 1598-1607.

Yabo LUO,Shaolong YU,Feng ZHANG,Cunrong LI. Improved migrating bird algorithm for re-entrant hybrid flowshop scheduling problem with lot streaming. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1598-1607.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.08.006        https://www.zjujournals.com/eng/CN/Y2025/V59/I8/1598

图 1  RHFSP-LS的示意图
图 2  MBO多目标优化的示意图
图 3  IMO-MBO的流程图
图 4  特殊问题调度的甘特图
图 5  顺序交叉的示意图
参数小规模大规模
工艺批次数量[5, 10][10, 20]
加工子批数量[1, 5][1, 10]
重入层数[1, 2][1, 4]
加工阶段数量[4, 6][6, 10]
每个阶段并行机数量[1, 3][1, 6]
加工时间[5, 30]
工艺批次交货期限$ [0.7{\mathrm{ATPT}},0.7 \mathrm{max}\;({\mathrm{{P}{T}}})] $
表 1  生成算例集所需参数的取值范围
参数水平参数
$ {P}_{\mathrm{s}\mathrm{i}\mathrm{z}\mathrm{e}} $$ G $$ [{P}_{\mathrm{f}},{P}_{\mathrm{u}}] $$ [{A}_{\mathrm{m}\mathrm{i}\mathrm{n}},{A}_{\mathrm{m}\mathrm{a}\mathrm{x}}] $$ {A}_{\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{t}} $
Level1313[0.1, 0.9][2,4]8
Level2515[0.2, 0.8][3,5]10
Level3818[0.3, 0.7][4,6]13
Level410110[0.4, 0.6][5,7]15
表 2  正交实验中参数水平的取值
实验
编号
参数IGD
平均值
$ {P}_{\mathrm{s}\mathrm{i}\mathrm{z}\mathrm{e}} $$ G $$ [{P}_{\mathrm{f}},{P}_{\mathrm{u}}] $$ [{A}_{\mathrm{m}\mathrm{i}\mathrm{n}}, $$ {A}_{\mathrm{m}\mathrm{a}\mathrm{x}}] $$ {A}_{\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{t}} $
1313[0.1, 0.9][2, 4]870.4741
2315[0.2, 0.8][3, 5]1076.5185
3318[0.3, 0.7][4, 6]1362.2106
43110[0.4, 0.6][5, 7]1566.1984
5513[0.2, 0.8][4, 6]1579.3679
6515[0.1, 0.9][5, 7]1387.6653
7518[0.4, 0.6][2, 4]1080.1016
85110[0.3, 0.7][3, 5]877.2222
9813[0.3, 0.7][5, 7]10102.1428
10815[0.4, 0.6][4, 6]894.7215
11818[0.1, 0.9][3, 5]15105.5816
128110[0.2, 0.8][2, 4]1398.6123
131013[0.4, 0.6][3, 5]13111.7112
141015[0.3, 0.7][2, 4]15102.2907
151018[0.2, 0.8][5, 7]8107.0169
1610110[0.1, 0.9][4, 6]10103.5490
表 3  正交实验结果
水平$ {P}_{\mathrm{s}\mathrm{i}\mathrm{z}\mathrm{e}} $$ G $$ [{P}_{\mathrm{f}},{P}_{\mathrm{u}}] $$ [{A}_{\mathrm{m}\mathrm{i}\mathrm{n}}, $$ {A}_{\mathrm{m}\mathrm{a}\mathrm{x}}] $$ {A}_{\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{t}} $
Level168.850490.924091.817587.869787.3586
Level281.089290.299090.378992.758490.5780
Level3100.264588.727785.966684.962290.0498
Level4106.141986.395488.183190.755888.3596
Delta37.29154.52865.85097.79623.2194
排秩14331
表 4  参数水平值的排序
算法解码策略种群初始化基于个体年龄
的邻域搜索
逃逸策略
IMO-MBO1$ a $
MBO12$ a $
MBO23$ a $
MBO31$ b $
MBO41$ c $
MBO51$ d $
MBO61$ a $
MBO71$ a $
MBO82$ d $
表 5  消融实验的策略设置
算例IGD
IMO-MBOMBO1MBO2MBO3MBO4MBO5MBO6MBO7MBO8
N8M5R225.3812+25.423120.607729.3766*26.320630.905526.780029.144333.3299
N10M6R227.9043+27.182030.535340.7840*28.347641.564629.191430.393241.7358
N7M4R13.8630+4.74566.52115.0911*4.41045.45494.21364.65575.8562
N6M6R223.9847+23.650732.073828.4261*24.009130.571025.290424.727630.5995
N7M6R120.729522.413213.094223.3739*20.5896+24.166822.413223.202226.3538
N18M6R259.9558+52.0587157.0559155.0430*59.9601180.500164.428077.2802249.7320
N16M6R4121.2070129.938360.9170177.7854120.8587+157.4509*130.2013122.9012159.7152
N17M8R363.6715+82.4753151.6475181.593165.3661165.8053*70.860368.0615161.3383
N11M7R234.9560+39.233036.7736203.2538*37.1728204.904536.541835.9319182.8789
N13M6R145.6521+48.195169.188362.609246.807262.0986*48.774051.267666.0469
表 6  IMO-MBO与变体算法的IGD指标对比
对比算法p对比算法p
IMO-MBO vs. MBO10.139MBO2 vs. IMO-MBO0.285
IMO-MBO vs. MBO50.005MBO2 vs. MBO10.445
IMO-MBO vs. MBO60.005IMO-MBO vs. MBO30.037
IMO-MBO vs. MBO70.005IMO-MBO vs. MBO40.005
IMO-MBO vs. MBO80.005MBO3 vs. MBO50.386
表 7  IMO-MBO与变体算法的Wilcoxon符号秩检验
图 6  $ \boldsymbol{\varepsilon } $-约束法与不同解码方法所得的Pareto前沿对比图
算法参数数值
NSGA-II种群大小100
交叉概率0.8
变异概率0.2
MOPSO粒子群规模50
惯性权重0.2
个体学习因子0.4
群体学习因子0.8
表 8  NSGA-II和MOPSO的部分参数取值
算法IGD
N8M5R2N10M6R2N7M4R1N6M6R2N7M6R1N18M6R2N16M6R4N17M8R3N11M7R2N13M6R1
IMO-MBO20.512445.89501.562327.958724.561456.811786.990770.735721.800832.7284
NSGA-II28.958869.12796.363038.785932.5824416.8008276.4641166.672359.193765.9818
MOPSO21.774670.04099.183636.893637.7266350.0761348.5028134.274836.371966.4674
MOHGA22.050852.83022.195229.049226.039251.2483105.556977.648730.706135.0671
HDABC21.592355.83073.008027.980728.2604248.0519181.2737155.648245.966652.1716
表 9  IMO-MBO与对比算法的IGD指标对比
对比算法p
IMO-MBO vs. NSGA-II0.005
IMO-MBO vs. MOPSO0.005
IMO-MBO vs. MOHGA0.028
IMO-MBO vs. HDABC0.005
表 10  IMO-MBO与对比算法的Wilcoxon符号秩检验
图 7  IGD指标的归一化结果
图 8  N6M6R2和N17M8R3的Pareto前沿对比图
1 CHAMNANLOR C, SETHANAN K, GEN M, et al Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints[J]. Journal of Intelligent Manufacturing, 2017, 28 (8): 1915- 1931
doi: 10.1007/s10845-015-1078-9
2 TONG Shuiguang, YAN Xiaoyan, TONG Zheming, et al Multi-objective evolutionary algorithm with variable neighborhood search for optimizing green scheduling in a re-entrant hybrid flow shop with dynamic events[J]. Journal of Physics: Conference Series, 2024, 2747 (1): 012007
doi: 10.1088/1742-6596/2747/1/012007
3 LEI Deming, DUAN Surui, LI Mingbo, et al An elite-class teaching-learning-based optimization for reentrant hybrid flow shop scheduling with bottleneck stage[J]. Computers, Materials and Continua, 2024, 79 (1): 47- 63
doi: 10.32604/cmc.2024.049481
4 耿凯峰, 叶春明 考虑多时间因素的绿色可重入混合流水车间调度问题[J]. 计算机集成制造系统, 2023, 29 (1): 75- 90
GENG Kaifeng, YE Chunming Green re-entrant hybrid flow shop scheduling problem considering multiple time factors[J]. Computer Integrated Manufacturing System, 2023, 29 (1): 75- 90
5 秦红斌, 李晨晓, 唐红涛, 等 基于MOMA的可重入混合流水车间调度问题研究[J]. 系统仿真学报, 2024, 36 (1): 131- 148
QIN Hongbin, LI Chenxiao, TANG Hongtao, et al Reentrant hybrid flow shop scheduling problem based on MOMA[J]. Journal of System Simulation, 2024, 36 (1): 131- 148
6 WU Xiuli, CAO Zheng An improved multi-objective evolutionary algorithm based on decomposition for solving re-entrant hybrid flow shop scheduling problem with batch processing machines[J]. Computers and Industrial Engineering, 2022, 169: 108236
doi: 10.1016/j.cie.2022.108236
7 汤洪涛, 王丹南, 邵益平, 等 基于改进候鸟迁徙优化的多目标批量流混合流水车间调度[J]. 上海交通大学学报, 2022, 56 (2): 201- 213
TANG Hongtao, WANG Dannan, SHAO Yiping, et al A modified migrating birds optimization for multi-objective lot streaming hybird flowshop scheduling[J]. Journal of Shanghai Jiaotong University, 2022, 56 (2): 201- 213
8 PAN Quanke, DONG Yan An improved migrating birds optimisation for a hybrid flowshop scheduling with total flowtime minimisation[J]. Information Sciences, 2014, 277: 643- 655
doi: 10.1016/j.ins.2014.02.152
9 轩华, 李冰, 罗书敏, 等 基于总加权完成时间的可重入混合流水车间调度问题[J]. 控制与决策, 2018, 33 (12): 2218- 2226
XUAN Hua, LI Bing, LUO Shumin, et al Reentrant hybird flowshop scheduling problem based on total weighted completion time[J]. Control and Decision, 2018, 33 (12): 2218- 2226
10 NAWAZ M, ENSCORE E E, HAM I A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[J]. Omega, 1983, 11 (1): 91- 95
doi: 10.1016/0305-0483(83)90088-9
11 ZHANG Biao, PAN Quanke, GAO Xinli, et al An effective modified migrating birds optimization for hybrid flowshop scheduling problem with lot streaming[J]. Applied Soft Computing, 2017, 52: 14- 27
doi: 10.1016/j.asoc.2016.12.021
12 CHO H M, BAE S J, KIM J, et al Bi-objective scheduling for reentrant hybrid flow shop using pareto genetic algorithm[J]. Computers and Industrial Engineering, 2011, 61 (3): 529- 541
doi: 10.1016/j.cie.2011.04.008
13 王丽萍, 任宇, 邱启仓, 等 多目标进化算法性能评价指标研究综述[J]. 计算机学报, 2021, 44 (8): 1590- 1619
WANG Liping, REN Yu, QIU Qicang, et al Survey on performance indicators for multi-objective evolutionary algorithms[J]. Chinese Journal of Computers, 2021, 44 (8): 1590- 1619
doi: 10.11897/SP.J.1016.2021.01590
14 张静, 王万良, 徐新黎, 等 混合粒子群算法求解多目标柔性作业车间调调度度问题[J]. 控制理论与应用, 2012, 29 (6): 715- 722
ZHANG Jing, WANG Wanliang, XU Xinli, et al Hybrid particle-swarm optimization for multi-objective flexible job-shop scheduling problem[J]. Control Theory and Applications, 2012, 29 (6): 715- 722
15 杨雨霏. 基于混合算法的可重入混合流水车间调度问题研究[D]. 武汉: 华中科技大学, 2022.
YANG Yufei. Research on re-entrant hybrid flow shop scheduling problem based on hybrid algorithm [D]. Wuhan: Huazhong University of Science and Technology, 2022.
[1] 王昱,马春荣,赵明月. 基于混合策略多目标粒子群的异构无人机协同多任务分配[J]. 浙江大学学报(工学版), 2025, 59(4): 821-831.
[2] 张盈斐,胡小兵,周航,冯序增. 基于改进的NSGA-II算法的三维扇区自动划设[J]. 浙江大学学报(工学版), 2025, 59(2): 413-422.
[3] 李勇,王跃,柳富强,孙柏青,李恺如. 护工-机器人协作养老情境下的多任务分配框架[J]. 浙江大学学报(工学版), 2025, 59(2): 375-383.
[4] 余廷芳,张艮离,周嘉鹏,汤一村. 超临界CO2布雷顿循环耦合有机闪蒸循环的性能分析及优化[J]. 浙江大学学报(工学版), 2025, 59(1): 130-140.
[5] 李若琼,翁源,李欣. 分数阶磁耦合谐振双向无线电能传输系统参数优化[J]. 浙江大学学报(工学版), 2025, 59(1): 141-151.
[6] 叶倩琳,王万良,王铮. 多目标粒子群优化算法及其应用研究综述[J]. 浙江大学学报(工学版), 2024, 58(6): 1107-1120.
[7] 詹燕,陈洁雅,江伟光,鲁建厦,汤洪涛,宋新禹,许丽丽,刘赛淼. 基于改进NSGA-Ⅱ的多目标车间物料配送方法[J]. 浙江大学学报(工学版), 2024, 58(12): 2510-2519.
[8] 曹晓彦,于敏,周瑾,王运志. 可调旋转式流体阻尼器参数多目标优化设计[J]. 浙江大学学报(工学版), 2023, 57(7): 1439-1449.
[9] 余廷芳,宋凌. 超临界CO2布雷顿循环余热回收系统性能分析与优化[J]. 浙江大学学报(工学版), 2023, 57(2): 404-414.
[10] 王万良,陈忠馗,吴菲,王铮,俞梦娇. 基于个体预测的动态多目标优化算法[J]. 浙江大学学报(工学版), 2023, 57(11): 2133-2146.
[11] 王万良,金雅文,陈嘉诚,李国庆,胡明志,董建杭. 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报(工学版), 2022, 56(3): 531-541.
[12] 徐钧恒,杨晓钧,李兵. 基于交叉簧片式铰链的变弯度机翼机构设计[J]. 浙江大学学报(工学版), 2022, 56(3): 444-451, 509.
[13] 鲁建厦,金敬豪,赵文彬,陈青丰,江伟光. 基于候鸟算法的批量流混合装配流水车间调度[J]. 浙江大学学报(工学版), 2022, 56(11): 2135-2144.
[14] 邓齐林,鲁娟,陈勇辉,冯健,廖小平,马俊燕. 基于深度强化学习的数控铣削加工参数优化方法[J]. 浙江大学学报(工学版), 2022, 56(11): 2145-2155.
[15] 陈俊杰,李洪均,曹张华. 性能感知的核心网控制面资源分配算法[J]. 浙江大学学报(工学版), 2021, 55(9): 1782-1787.