Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (2): 375-383    DOI: 10.3785/j.issn.1008-973X.2025.02.015
机械工程、能源工程     
护工-机器人协作养老情境下的多任务分配框架
李勇1(),王跃1,柳富强2,孙柏青1,李恺如1
1. 沈阳工业大学 电气工程学院,辽宁 沈阳 110870
2. 大连医科大学附属第一医院,辽宁 大连 116021
Multi-task allocation framework in context of caregiver-robot collaborative elderly care
Yong LI1(),Yue WANG1,Fuqiang LIU2,Baiqing SUN1,Kairu LI1
1. School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
2. The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
 全文: PDF(876 KB)   HTML
摘要:

为了兼顾护工和老人的主观感受,提出考虑护工疲劳度和老人满意度的多人机协作任务分配框架. 考虑护工执行任务前的休息时长、护工和老人之间的好感度、任务难度等因素,建立护工疲劳度的数学模型,结合老人满意度建立多人机协作任务分配多目标优化模型. 结合养老情境下常见任务的特点,提出二维双约束编码及其合理初始化和更新方法. 基于该编码,采用多目标进化算法对多目标优化模型进行求解. 根据min-max与max-min原则,在Pareto最优解集中确定最终的任务执行方案,以防止出现个体护工疲劳度极大或个体老人满意度极小的情况. 仿真结果表明,在提出的养老情境下,“多护工-多机器人”协作的多任务分配框架能够在完成多护工-多机器人团队任务分配的同时,兼顾护工疲劳度和老人满意度、护工总体和个体之间、老人总体和个体之间的平衡.

关键词: 养老情境多任务分配护工疲劳度多目标优化    
Abstract:

A multi-human-robot collaboration task allocation framework considering both caregiver’s fatigue and elderly satisfaction was proposed in order to balance the subjective feelings of caregivers and elderly people. A mathematical model of caregiver’s fatigue was established by considering factors such as caregiver’s rest duration before task execution, the rapport between caregivers and elderly people, and task difficulty. A multi-objective optimization model for multi-human-robot collaboration task allocation was developed combined with elderly satisfaction. A two-dimensional double-constraint encoding method and its reasonable initialization and updating methods were proposed based on the characteristics of common tasks in elderly care scenarios. A multi-objective evolutionary algorithm was employed to solve the multi-objective optimization model by using this encoding. The final task execution plan was determined from the Pareto optimal solution set according to the min-max and max-min principles in order to prevent situations where individual caregivers experience extreme fatigue or individual elderly people have extremely low satisfaction. The simulation results demonstrate that the multi-task allocation framework for ‘multiple caregivers and multiple robots’ collaboration can achieve task allocation within a multi-caregiver and multi-robot team in the proposed elderly care scenario while balancing caregiver’s fatigue and elderly satisfaction, as well as maintaining a balance between the overall and individual caregivers, and between the overall and individual elderly people.

Key words: elderly care scenario    multi-task allocation    caregiver’s fatigue    multi-objective optimization
收稿日期: 2023-12-28 出版日期: 2025-02-11
CLC:  TP 18  
基金资助: 辽宁省兴辽英才计划资助项目(XLYC2203104).
作者简介: 李勇(1980—),男,教授,博士,从事系统建模与多目标优化和机器学习等的研究. orcid.org/0000-0002-3098-6363. E-mail:liyong@sut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李勇
王跃
柳富强
孙柏青
李恺如

引用本文:

李勇,王跃,柳富强,孙柏青,李恺如. 护工-机器人协作养老情境下的多任务分配框架[J]. 浙江大学学报(工学版), 2025, 59(2): 375-383.

Yong LI,Yue WANG,Fuqiang LIU,Baiqing SUN,Kairu LI. Multi-task allocation framework in context of caregiver-robot collaborative elderly care. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 375-383.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.02.015        https://www.zjujournals.com/eng/CN/Y2025/V59/I2/375

图 1  TAV示意图
图 2  任务执行方案编码的迭代交叉方式
图 3  AG-子任务时间同步处理的流程图
图 4  虚拟养老情境图
图 5  McmrTAF的任务执行方案的Pareto解集
图 6  护工和老人的主观感受情况及最终方案的对比图:2种执行方案相差较大的情况
图 7  护工和老人的主观感受情况及最终方案的对比图:2种执行方案相同的情况
图 8  护工和老人的主观感受情况及最终方案的对比图:2种执行方案相近的情况
1 雷霆, 郭娟, 向川 中国人口老龄化风险分布的梯次结构及其动态演进[J]. 人口与经济, 2023, (1): 87- 105
LEI Ting, GUO Juan, XIANG Chuan Echelon structure and dynamic evolution of China’s population aging risk distribution[J]. Population and Economics, 2023, (1): 87- 105
doi: 10.3969/j.issn.1000-4149.2023.00.006
2 赵雅婷, 赵韩, 梁昌勇, 等 养老服务机器人现状及其发展建议[J]. 机械工程学报, 2019, 55 (23): 13- 24
ZHAO Yating, ZHAO Han, LIANG Changyong, et al Current situation and development suggestions of old-age service robot[J]. Journal of Mechanical Engineering, 2019, 55 (23): 13- 24
doi: 10.3901/JME.2019.23.013
3 钱艺倩 基于人工智能的养老机器人功能设计及发展研究[J]. 智能计算机与应用, 2020, 10 (7): 292- 293
QIAN Yiqian Research on function design and development of pension robot based on artificial intelligence[J]. Intelligent Computer and Applications, 2020, 10 (7): 292- 293
doi: 10.3969/j.issn.2095-2163.2020.07.069
4 LUJAK M, FERNÁNDEZ A, ONAINDIA E Spillover algorithm: a decentralised coordination approach for multi-robot production planning in open shared factories[J]. Robot and Computer-Integrated Manufacturing, 2021, 70: 1- 10
5 SARKAR C, DEY S, AGARWAL M. Semantic knowledge driven utility calculation towards efficient multi-robot task allocation [C]// IEEE International Conference on Automation Science and Engineering , Munich: IEEE, 2018: 144–147.
6 JOHNSON L B, CHOI H L, HOW J P The role of information assumptions in decentralized task allocation: a tutorial[J]. IEEE Control Systems Society, 2016, 36 (4): 45- 58
doi: 10.1109/MCS.2016.2558419
7 SEMWAL T, JHA S S, NAIR S B On ordering multi-robot task executions within a cyber physical system[J]. ACM Transactions on Autonomous and Adaptive Systems, 2017, 12 (4): 1- 28
8 LERMAN K, JONES C, GALSTYAN A, et al Analysis of dynamic task allocation in multi-robot systems[J]. Journal of Robotics Research, 2006, 25 (3): 225- 241
doi: 10.1177/0278364906063426
9 FARINELLI A, IOCCHI L, NARDI D Distributed on-line dynamic task assignment for multi-robot patrolling[J]. Autonomous Robots, 2017, 41 (6): 1321- 1345
doi: 10.1007/s10514-016-9579-8
10 NEDJAH N, DE MENDONÇA R M, DE MACEDO MOURELLE L Pso-based distributed algorithm for dynamic task allocation in a robotic swarm[J]. Procedia Computer Science, 2015, 51 (C): 326- 335
11 IRFAN M, FAROOQ A. Auction-based task allocation scheme for dynamic coalition formations in limited robotic swarms with heterogeneous capabilities [C]// International Conference on Intelligent Systems Engineering . Islamabad: IEEE, 2016: 210–215.
12 CHEN J, YANG Y, WU Y. Multi-robot task allocation based on robotic utility value and genetic algorithm [C]// Proceedings of 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems . Shanghai: IEEE, 2009: 256–260.
13 QIZILBASH A A H, HENKEL C, MOSTAGHIM S. Ant colony optimization based multi-robot planner for combined task allocation and path finding [C]// 17th International Conference on Ubiquitous Robot . Kyoto: IEEE, 2020: 487–493.
14 ARSLAN G, MARDEN J R, SHAMMA J S Autonomous vehicle-target assignment: a game-theoretical formulation[J]. Journal of Dynamic Systems, Measurement, and Control, Transactions of the ASME, 2007, 129 (5): 584- 596
doi: 10.1115/1.2766722
15 CHAPMAN A C, MICILLO R A. , KOTA R, et al. Decentralised dynamic task allocation: a practical game-theoretic approach [J]. Proceedings of International Joint Conference on Autonomous Agents and Multiagent Systems, 2009, 2: 680–687.
16 DAS G P, MCGINNITY T M, COLEMAN S A, et al A distributed task allocation algorithm for a multi-robot system in healthcare facilities[J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 2015, 80 (1): 33- 58
17 WOO J, WADA K, KUBOTA N. Robot partner system for elderly people care by using sensor network [C]// International Conference on Biomedical Robotics and Biomechatronics . Rome: IEEE, 2012: 1329–1334.
18 RAMDANI N, PANAYIDES A, KARAMOUSADAKIS M, et al. A safe, efficient and integrated indoor robotic fleet for logistic applications in healthcare and commercial spaces: the endorse concept [C]// IEEE International Conference on Mobile Data Management . Hong Kong: IEEE, 2019: 425–430.
19 MOURADIAN C, SAHOO J, GLITHO R H, et al. A coalition formation algorithm for multi-robot task allocation in large-scale natural disasters [C]// 13th International Wireless Communications and Mobile Computing Conference. Valencia: IEEE, 2017: 1909-1914.
20 YANG Q, PARASURAMAN R. Needs-driven heterogeneous multi-robot cooperation in rescue missions [C]// IEEE International Symposium on Safety, Security, and Rescue Robotics. Abu Dhabi: IEEE, 2020: 252–259.
21 李勇, 李坤成, 孙柏青, 等 智能体Petri网融合的多机器人-多任务协调框架[J]. 自动化学报, 2021, 47 (8): 2029- 2049
LI Yong, LI Kuncheng, SUN Baiqing, et al Multi-robot-multi-task coordination framework based on the integration of intelligent agent and Petri net[J]. Acta Automatica Sinica, 2021, 47 (8): 2029- 2049
[1] 余廷芳,张艮离,周嘉鹏,汤一村. 超临界CO2布雷顿循环耦合有机闪蒸循环的性能分析及优化[J]. 浙江大学学报(工学版), 2025, 59(1): 130-140.
[2] 李若琼,翁源,李欣. 分数阶磁耦合谐振双向无线电能传输系统参数优化[J]. 浙江大学学报(工学版), 2025, 59(1): 141-151.
[3] 叶倩琳,王万良,王铮. 多目标粒子群优化算法及其应用研究综述[J]. 浙江大学学报(工学版), 2024, 58(6): 1107-1120.
[4] 詹燕,陈洁雅,江伟光,鲁建厦,汤洪涛,宋新禹,许丽丽,刘赛淼. 基于改进NSGA-Ⅱ的多目标车间物料配送方法[J]. 浙江大学学报(工学版), 2024, 58(12): 2510-2519.
[5] 曹晓彦,于敏,周瑾,王运志. 可调旋转式流体阻尼器参数多目标优化设计[J]. 浙江大学学报(工学版), 2023, 57(7): 1439-1449.
[6] 余廷芳,宋凌. 超临界CO2布雷顿循环余热回收系统性能分析与优化[J]. 浙江大学学报(工学版), 2023, 57(2): 404-414.
[7] 王万良,陈忠馗,吴菲,王铮,俞梦娇. 基于个体预测的动态多目标优化算法[J]. 浙江大学学报(工学版), 2023, 57(11): 2133-2146.
[8] 王万良,金雅文,陈嘉诚,李国庆,胡明志,董建杭. 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报(工学版), 2022, 56(3): 531-541.
[9] 徐钧恒,杨晓钧,李兵. 基于交叉簧片式铰链的变弯度机翼机构设计[J]. 浙江大学学报(工学版), 2022, 56(3): 444-451, 509.
[10] 邓齐林,鲁娟,陈勇辉,冯健,廖小平,马俊燕. 基于深度强化学习的数控铣削加工参数优化方法[J]. 浙江大学学报(工学版), 2022, 56(11): 2145-2155.
[11] 陈俊杰,李洪均,曹张华. 性能感知的核心网控制面资源分配算法[J]. 浙江大学学报(工学版), 2021, 55(9): 1782-1787.
[12] 李笑竹,王维庆. 区域综合能源系统两阶段鲁棒博弈优化调度[J]. 浙江大学学报(工学版), 2021, 55(1): 177-188.
[13] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705.
[14] 黄华,邓文强,李源,郭润兰. 基于空间动力学优化的机床结构件质量匹配设计[J]. 浙江大学学报(工学版), 2020, 54(10): 2009-2017.
[15] 童水光,赵航,刘会琴,童哲铭,余跃,唐宁,吴伟杰,李进富,从飞云,张昊,王寅华,郝国帅. 中开多级离心泵效率优化计算方法[J]. 浙江大学学报(工学版), 2019, 53(5): 988-996.