机械工程、能源工程 |
|
|
|
|
考虑材料形变的旋风铣削螺纹工件表面粗糙度建模 |
刘超1,2,3( ),黄尊鹏1,黄绍服1,2 |
1. 安徽理工大学 机电工程学院,安徽 淮南 232001 2. 安徽理工大学 环境友好材料与职业健康研究所,安徽 芜湖 241003 3. 重庆大学 机械传动国家重点实验室,重庆 400030 |
|
Surface roughness modeling of thread workpieces in whirlwind milling considering material deformation |
Chao LIU1,2,3( ),Zunpeng HUANG1,Shaofu HUANG1,2 |
1. School of Mechanical and Electrical Engineering, Anhui University of Science and Technology, Huainan 232001, China 2. Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu 241003, China 3. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China |
1 |
倪寿勇, 李迎, 邓顺贤 精密外螺纹内旋铣的机理研究与刀具廓形设计[J]. 机械工程学报, 2012, 48 (7): 193- 198 NI Shouyong, LI Ying, DENG Shunxian Study on machining mechanism of internal whirling process for precise external thread and its tool profile design[J]. Journal of Mechanical Engineering, 2012, 48 (7): 193- 198
doi: 10.3901/JME.2012.07.193
|
2 |
倪寿勇, 李迎 旋风铣削加工刀齿切削力在线测量与预报[J]. 机械工程学报, 2015, 51 (11): 207- 212 NI Shouyong, LI Ying The measurement and prediction of cutting force for individual tooth in whirling process[J]. Journal of Mechanical Engineering, 2015, 51 (11): 207- 212
doi: 10.3901/JME.2015.11.207
|
3 |
雷勇, 赵威, 何宁, 等 TC17 钛合金低温铣削表面粗糙度预测[J]. 中国机械工程, 2022, 33 (5): 583- 588 LEI Yong, ZHAO Wei, HE Ning, et al Prediction of surface roughness for cryogenic milling TC17 titanium alloys[J]. China Mechanical Engineering, 2022, 33 (5): 583- 588
|
4 |
马廉洁, 李红双 脆性材料机械加工表面粗糙度模型的研究进展[J]. 中国机械工程, 2022, 33 (7): 757- 768 MA Lianjie, LI Hongshuang Research progresses on surface roughness model of brittle material machining[J]. China Mechanical Engineering, 2022, 33 (7): 757- 768
doi: 10.3969/j.issn.1004-132X.2022.07.001
|
5 |
谭芳芳, 朱俊江, 严天宏, 等 基于GA-WPT-ELM的6061铝合金表面粗糙度预测[J]. 浙江大学学报: 工学版, 2020, 54 (1): 40- 47 TAN Fangfang, ZHU Junjiang, YAN Tianhong, et al Surface roughness prediction of 6061 aluminum alloy based on GA-WPT-ELM[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (1): 40- 47
|
6 |
HE C L, ZONG W J, ZHANG J J Influencing factors and theoretical modeling methods of surface roughness in turning process: state-of-the-art[J]. International Journal of Machine Tools and Manufacture, 2018, 129: 15- 26
|
7 |
范思敏, 肖继明, 董永亨, 等 球头铣刀铣削球面的表面形貌建模与仿真研究[J]. 中国机械工程, 2020, 31 (24): 2924- 2930 FAN Simin, XIAO Jiming, DONG Yongheng, et al Study on modeling and simulation of surface topography of spherical milling with ball-end milling cutters[J]. China Mechanical Engineering, 2020, 31 (24): 2924- 2930
|
8 |
陈景强, 马廉洁, 孟博, 等 氟金云母表面形成机理及表面粗糙度理论模型[J]. 中国机械工程, 2020, 31 (24): 2918- 2923 CHEN Jingqiang, MA Lianjie, MENG Bo, et al Surface formation mechanism and surface roughness theoretical model of fluorophlogopite[J]. China Mechanical Engineering, 2020, 31 (24): 2918- 2923
|
9 |
HAO Y, LIU Y Analysis of milling surface roughness prediction for thin-walled parts with curved surface[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93: 2289- 2297
doi: 10.1007/s00170-017-0615-4
|
10 |
ZHAO Z, WANG S, WANG Z, et al Interference-and chatter-free cutter posture optimization towards minimal surface roughness in five-axis machining[J]. International Journal of Mechanical Sciences, 2020, 171: 105395
doi: 10.1016/j.ijmecsci.2019.105395
|
11 |
ZHENG F, ZHANG M, ZHANG W, et al The fundamental roughness model for face-milling spiral bevel gears considering run-outs[J]. International Journal of Mechanical Sciences, 2019, 156: 272- 282
doi: 10.1016/j.ijmecsci.2019.03.017
|
12 |
SUN Z, TO S, ZHANG S, et al Theoretical and experimental investigation into non-uniformity of surface generation in micro-milling[J]. International Journal of Mechanical Sciences, 2018, 140: 313- 324
doi: 10.1016/j.ijmecsci.2018.03.019
|
13 |
WANG L, GE S, SI H, et al Roughness control method for five-axis flank milling based on the analysis of surface topography[J]. International Journal of Mechanical Sciences, 2020, 169: 105337
doi: 10.1016/j.ijmecsci.2019.105337
|
14 |
YUAN Y, JING X, EHMANN K F, et al Surface roughness modeling in micro end-milling[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95: 1655- 1664
doi: 10.1007/s00170-017-1278-x
|
15 |
JING X, SONG B, XU J, et al Mathematical modeling and experimental verification of surface roughness in micro-end-milling[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120: 7627- 7637
doi: 10.1007/s00170-022-09244-7
|
16 |
ARIZMENDI M, JIMÉNEZ A Modelling and analysis of surface topography generated in face milling operations[J]. International Journal of Mechanical Sciences, 2019, 163: 105061
doi: 10.1016/j.ijmecsci.2019.105061
|
17 |
CAI C, AN Q, MING W, et al Modelling of machined surface topography and anisotropic texture direction considering stochastic tool grinding error and wear in peripheral milling[J]. Journal of Materials Processing Technology, 2021, 292: 117065
doi: 10.1016/j.jmatprotec.2021.117065
|
18 |
LAZKANO X, ARISTIMUÑO P X, AIZPURU O, et al Roughness maps to determine the optimum process window parameters in face milling[J]. International Journal of Mechanical Sciences, 2022, 221: 107191
doi: 10.1016/j.ijmecsci.2022.107191
|
19 |
GUO Q, YE L, WANG Y, et al Comparative assessment of surface roughness and microstructure produced in whirlwind milling of bearing steel[J]. Machining Science and Technology, 2014, 18 (2): 251- 276
doi: 10.1080/10910344.2014.897843
|
20 |
曹勇, 王禹林, 冯虎田 大型螺纹硬态旋风铣削的表面粗糙度试验研究[J]. 组合机床与自动化加工技术, 2015, (1): 26- 29 CAO Yong, WANG Yulin, FENG Hutian Experimental research on surface roughness of large-scale thread in hard whirling[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2015, (1): 26- 29
|
21 |
周斌, 曹勇, 王禹林, 等 基于 BP 神经网络的大型螺纹旋风铣削表面粗糙度预测[J]. 组合机床与自动化加工技术, 2015, (7): 5- 7 ZHOU Bin, CAO Yong, WANG Yulin, et al Prediction of surface roughness of large-scale thread hard whirling based on BP neural network[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2015, (7): 5- 7
|
22 |
GUO Q, WANG M, XU Y, et al Minimization of surface roughness and tangential cutting force in whirlwind milling of a large screw[J]. Measurement, 2020, 152: 107256
doi: 10.1016/j.measurement.2019.107256
|
23 |
何彦, 余平甲, 王乐祥, 等 丝杠硬态旋铣工艺的多目标参数优化[J]. 计算机集成制造系统, 2018, 24 (4): 894- 904 HE Yan, YU Pingjia, WANG Lexiang, et al Multi-objective optimization of machining parameters for hard whirlwind milling of screw[J]. Computer Integrated Manufacturing Systems, 2018, 24 (4): 894- 904
|
24 |
WU P, DAI H, LI Y, et al A physics-informed machine learning model for surface roughness prediction in milling operations[J]. The International Journal of Advanced Manufacturing Technology, 2022, 123: 4065- 4076
doi: 10.1007/s00170-022-10470-2
|
25 |
WANG L, HE Y, WANG Y, et al Analytical modeling of material removal mechanism in dry whirling milling process considering geometry, kinematics and mechanics[J]. International Journal of Mechanical Sciences, 2020, 172: 105419
doi: 10.1016/j.ijmecsci.2020.105419
|
26 |
GUO Q, GUO T, WANG Y The cutting vibration and surface information in whirlwind milling a large screw[J]. Advances in Mechanical Engineering, 2022, 14 (8): 1- 11
|
27 |
王素玉, 于涛, 王文超 基于弹塑性理论的高速铣削表面粗糙度力学建模[J]. 工具技术, 2011, 45 (5): 25- 27 WANG Suyu, YU Tao, WANG Wenchao Mechanical modeling of surface roughness in HSM based on thermo-elastic-plastic theory[J]. Tool Engineering, 2011, 45 (5): 25- 27
|
28 |
王文超, 王素玉, 于涛, 等 基于热-弹塑性理论的高速切削45钢有限元分析[J]. 煤矿机械, 2012, 33 (3): 124- 125 WANG Wenchao, WANG Suyu, YU Tao, et al Finite element analysis of 45 steel in HSM based on thermo-elastic-plastic theory[J]. Coal Mine Machinery, 2012, 33 (3): 124- 125
|
29 |
李彦生, 薛斌, 陈东菊, 等 基于材料特性的飞刀铣削加工表面粗糙度模型的研究[J]. 制造业自动化, 2019, 41 (1): 65- 67 LI Yansheng, XUE Bin, CHEN Dongju, et al Research on surface roughness model of milling based on material characteristics[J]. Manufacturing Automation, 2019, 41 (1): 65- 67
|
30 |
章磊. 冷塑性变形过程中的表面粗糙度演变及控制研究[D]. 重庆: 重庆大学, 2018. ZHANG Lei. Research on the surface roughness evolution and surface finish controlling in cold plastic deformation [D]. Chongqing: Chongqing University, 2018.
|
31 |
黄宁. 考虑弹塑性变形特征的单晶硅超精密磨削表面质量预测[D]. 大连: 大连理工大学, 2021. HUANG Ning. Surface quality prediction of ultra-precision ground single-crystal silicon considering elasto-plastic deformation characteristics [D]. Dalian: Dalian University of Technology, 2021.
|
32 |
WANG B, LIU Z, SU G, et al Investigations of critical cutting speed and ductile-to-brittle transition mechanism for workpiece material in ultra-high speed machining[J]. International Journal of Mechanical Sciences, 2015, 104: 44- 59
doi: 10.1016/j.ijmecsci.2015.10.004
|
33 |
GAO G F, FU Z X, ZHAO J Z, et al Study on surface roughness of milling based on the elastic-plastic deformation[J]. Applied Mechanics and Materials, 2014, 551: 55- 60
doi: 10.4028/www.scientific.net/AMM.551.55
|
34 |
KRAGELSKY I V, DOBYCHIN M N, KOMBALOV V S. Friction and wear: calculation methods [M]. Oxford: Pergamon Press, 1982.
|
35 |
WANG S, WANG W, YU T, et al Prediction of the surface roughness in high-speed machining based on molecular-mechanical theory of friction[J]. Advanced Materials Research, 2011, 308-310: 1134- 1138
doi: 10.4028/www.scientific.net/AMR.308-310.1134
|
36 |
LALWANI D I, MEHTA N K, JAIN P K Extension of Oxley's predictive machining theory for Johnson and Cook flow stress model[J]. Journal of Materials Processing Technology, 2009, 209 (12/13): 5305- 5312
|
37 |
COHEN G, GILLES P, SEGONDS S, et al Thermal and mechanical modeling during dry turning operations[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58: 133- 140
doi: 10.1007/s00170-011-3372-9
|
38 |
TOUNSI N, VINCENTI J, OTHO A, et al From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation[J]. International Journal of Machine Tools and Manufacture, 2002, 42 (12): 1373- 1383
doi: 10.1016/S0890-6955(02)00046-9
|
39 |
SRINIVASA Y V, SHUNMUGAM M S Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison[J]. International Journal of Machine Tools and Manufacture, 2013, 67: 18- 27
doi: 10.1016/j.ijmachtools.2012.12.004
|
40 |
JOHNSON K L. Contact mechanics [M]. Cambridge: Cambridge University Press, 1987.
|
41 |
LIU C, HE Y, LI Y, et al Modeling of residual stresses by correlating surface topography in machining of AISI 52100 steel[J]. Journal of Manufacturing Science and Engineering, 2022, 144 (5): 051008
doi: 10.1115/1.4052706
|
42 |
ALTINTAS Y. Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design [M]. 2nd ed. Cambridge: Cambridge University Press, 2012.
|
43 |
LIU C, HE Y, WANG Y, et al An investigation of surface topography and workpiece temperature in whirling milling machining[J]. International Journal of Mechanical Sciences, 2019, 164: 105182
doi: 10.1016/j.ijmecsci.2019.105182
|
44 |
国家标准化管理委员会. 产品几何技术规范(GPS)表面结构 轮廓法 术语、定义及表面结构参数: GB/T 3505—2009 [S]. 北京: 中国标准出版社, 2009: 3.
|
45 |
WANG B, ZHANG Q, WANG M, et al A predictive model of milling surface roughness[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108: 2755- 2762
doi: 10.1007/s00170-020-05599-x
|
46 |
PAWAR S, SALVE A, CHINCHANIKAR S, et al Residual stresses during hard turning of AISI 52100 steel: numerical modelling with experimental validation[J]. Materials Today: Proceedings, 2017, 4 (2): 2350- 2359
doi: 10.1016/j.matpr.2017.02.084
|
47 |
GUO Y B, WEN Q, WOODBURY K A Dynamic material behavior modeling using internal state variable plasticity and its application in hard machining simulations[J]. Journal of Manufacturing Science and Engineering, 2006, 128 (3): 749- 759
doi: 10.1115/1.2193549
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|