Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (11): 2299-2308    DOI: 10.3785/j.issn.1008-973X.2024.11.011
机械与环境工程     
考虑个体习惯的轮椅机器人人机共享避障方法
王义娜1(),曹晨1,杨佳琪1,俞彦军1,傅国强1,王硕玉2
1. 沈阳工业大学 电气工程学院,辽宁 沈阳 110870
2. 高知工科大学 智能机械系,日本 高知 7820003
Human-machine shared obstacle avoidance method for wheelchair robot considering individual habit
Yina WANG1(),Chen CAO1,Jiaqi YANG1,Yanjun YU1,Guoqiang FU1,Shuoyu WANG2
1. School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
2. School of Systems Engineering, Kochi University of Technology, Kochi 7820003, Japan
 全文: PDF(2645 KB)   HTML
摘要:

为了避免个体操作习惯对智能轮椅机器人(WR)人机共享运动控制的影响,引入动态强化学习策略,基于三重奖励系统建立个体操作习惯与碰撞风险的关联特性,提出能够自适应用户行为及保证安全性的模糊强化学习状态融合式共享控制策略. 为了实现机器人的智能操控,采用距离型模糊推理算法建立基于座椅压力的方向意图识别模型和机器人人机共享控制框架. 面向用户意图方向与机器人实际方向的偏差度,分别基于高斯函数与偏差率建立当前奖励函数与预测奖励函数,以估计用户操作习惯. 基于边界距离建立任务奖励函数,以估计人机安全性. 基于模糊强化学习策略,利用三重奖励函数构建用户操作习惯与安全性的关联性,以动态调整共享控制中的用户控制权重,适应个体习惯,提高人机共享的操控精度和安全性. 在实验室搭建试验环境,验证了所提算法的有效性.

关键词: 智能轮椅机器人距离型模糊推理算法模糊强化学习个体习惯人机共享控制    
Abstract:

A dynamic reinforcement learning strategy was introduced to establish the correlation between individual operating habits and collision risk based on a triple-reward system in order to resolve the impact of individual operating habits on the shared motion control of intelligent wheelchair robots (WR). A fuzzy reinforcement learning state fusion-based shared control strategy was proposed, which could adapt to user behavior while ensuring safety. A distance fuzzy reasoning algorithm was employed to develop a direction intention recognition model based on seat pressure, which served as the foundation for establishing a human-machine shared control framework in order to achieve intelligent robot control. The current and predictive reward functions were established via the Gaussian function and deviation rate, respectively, focusing on the deviation between the user’s intended direction and the robot’s actual direction in order to estimate user operating habits. A task reward function was created according to boundary distance in order to predict human-machine safety. The correlation between user operating habits and safety was constructed by utilizing the fuzzy reinforcement learning strategy and the triple-reward system in order to dynamically adjust the user control weight within the shared control to adapt to individual habits. Then the precision and safety of human-machine shared control were enhanced. The effectiveness of the proposed algorithm was verified by experiments in a test environment.

Key words: intelligent wheelchair robot    distance fuzzy reasoning algorithm    fuzzy reinforcement learning    individual habit    human-machine shared control
收稿日期: 2023-12-13 出版日期: 2024-10-23
CLC:  TP 242  
基金资助: 国家自然科学基金资助项目(52175105);教育部春晖计划资助项目(HZKY20220415);辽宁省科技厅资助项目(2024MS107);辽宁省教育厅资助项目(JYTMS20231207).
作者简介: 王义娜(1986—),女,副教授,从事康复机器人、运动控制、智能识别、人机交互的研究. orcid.org/0000-0003-3574-8302. E-mail:wang.yina@sut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王义娜
曹晨
杨佳琪
俞彦军
傅国强
王硕玉

引用本文:

王义娜,曹晨,杨佳琪,俞彦军,傅国强,王硕玉. 考虑个体习惯的轮椅机器人人机共享避障方法[J]. 浙江大学学报(工学版), 2024, 58(11): 2299-2308.

Yina WANG,Chen CAO,Jiaqi YANG,Yanjun YU,Guoqiang FU,Shuoyu WANG. Human-machine shared obstacle avoidance method for wheelchair robot considering individual habit. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2299-2308.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.11.011        https://www.zjujournals.com/eng/CN/Y2024/V58/I11/2299

图 1  轮椅机器人的结构
图 2  考虑个体操作习惯的人机共享避障方法框架
图 3  实验对象所需的方向和角度
规则1:若x1=A11, x2=A12, x3=A13, x4=A14, 则$ \beta $=B1
规则2:若x1= A21, x2= A22, x3=A23, x4=A24, 则$ \beta $=B2
. . . . .
. . . . .
规则8:若x1=A81, x2=A82, x3=A83, x4=A84, 则$ \beta $=B8
前提:x1=A1, x2=A2, x3=A3, x4=A4
结论: $ \beta $=B
表 1  If-then 模糊规则
图 4  语言变量隶属函数的定义
图 5  共享控制系统的示意图
图 6  共享模糊控制器的隶属度函数
vw
βb = Sβb = Mβb = MHβb = H
SSMMHMH
MMMMHH
HMMHHH
表 2  模糊规则表
图 7  模糊强化学习的结构
βi/ (°)Emin/ (°)
实验对象A实验对象B实验对象C
0?1.5?3.8?8.1
450.54.9?5.1
901.94.39.8
135?1.20.50.7
180?0.50.36.4
225?0.7?7.2?5.9
2702.92.5?0.22
3154.72.91.7
表 3  每个被试的识别误差
图 8  测试环境的实拍图
图 9  期望速度为0.2 m/s时的避障路径图
图 10  期望速度为0.3 m/s时的避障路径图
图 11  指令方向、实际行驶方向和操作权重的相关数据变化
期望速度/ (m·s?1)避障类型Ma/ (°)βmin/ (°)dmin/cm
0.2自动避障23.74532
0.2共享避障10.47226
0.3自动避障27.214.447
0.3共享避障13.643.535
表 4  共享控制前、后的对比结果
图 12  实验环境1的实景图
图 13  实验环境2的实景图
图 14  实验环境1机器人行驶方向的比较
图 15  实验环境1相关数据的在线训练过程
图 16  实验环境2机器人行驶方向的比较
图 17  实验环境2相关数据的在线训练过程
图 18  不同实验环境下同一实验对象评估指标的变化趋势
图 19  实验场景1下不同实验对象评估指标的变化趋势
实验对象TP
A2.280.0260
B3.800.0030
C3.260.0017
D4.070.0001
表 5  |βh−βs|的配对T检测结果
1 OHARA E, WATANABE T, OISHI T, et al. Assistance control of wheelchair operation using active cast for the upper limb [C]// IEEE International Conference on Robotics and Automation . Shanghai: IEEE, 2011: 2223-2228.
2 CHALOEM T, YOKOTA S, HASHIMOTO H, et al. Oscillation suppression control for electric wheelchair using human body motion interface [C]// IEEE International Conference on Industrial Technology . Lyon: IEEE, 2018: 1991-1996.
3 LU T. A motion control method of intelligent wheelchair based on hand gesture recognition [C]// IEEE 8th Conference on Industrial Electronics and Applications . Melbourne: IEEE, 2013: 957-962.
4 NASIF S, KHAN M A G. Wireless head gesture controlled wheel chair for disable persons [C]// IEEE Region 10 Humanitarian Technology Conference . Dhaka: IEEE, 2017: 156-161.
5 ÖZLÜK Y, AKMAN-AYDIN E Fuzzy logic control of a head-movement based semi-autonomous human–machine interface[J]. Journal of Bionic Engineering, 2023, 20 (2): 645- 655
doi: 10.1007/s42235-022-00272-3
6 KAUR A Wheelchair control for disabled patients using EMG/EOG based human machine interface: a review[J]. Journal of Medical Engineering and Technology, 2021, 45 (1): 61- 74
doi: 10.1080/03091902.2020.1853838
7 张亚徽, 王斐, 李景宏, 等 基于稳态视觉诱发电位的智能轮椅半自主导航控制[J]. 机器人, 2019, 41 (5): 620- 627
ZHANG Yahui, WANG Fei, LI Jinghong, et al Semi-autonomous navigation control of intelligent wheelchair based on steady state visual evoked potential[J]. Robot, 2019, 41 (5): 620- 627
8 RECHY-RAMIREZ E J, HU H A flexible bio-signal based HMI for hands-free control of an electric powered wheelchair[J]. International Journal of Artificial Life Research, 2014, 4 (1): 59- 76
doi: 10.4018/ijalr.2014010105
9 JAMEEL H F, MOHAMMED S L, GHARGHAN S K. Wheelchair control system based on gyroscope of wearable tool for the disabled [C]// IOP Conference Series: Materials Science and Engineering . Baghdad: IOP Publishing, 2020, 745(1): 012091.
10 PAING M P, JUHONG A, PINTAVIROOJ C Design and development of an assistive system based on eye tracking[J]. Electronics, 2022, 11 (4): 535
doi: 10.3390/electronics11040535
11 HORI J, OHARA H, INAYOSHI S Control of speed and direction of electric wheelchair using seat pressure mapping[J]. Biocybernetics and Biomedical Engineering, 2018, 38 (3): 624- 633
doi: 10.1016/j.bbe.2018.04.007
12 FAN J, JIA S, LI X, et al. Motion control of intelligent wheelchair based on sitting postures [C]// IEEE International Conference on Mechatronics and Automation . Beijing: IEEE, 2011: 301-306.
13 KHALILULLAH K M I, OTA S, YASUDA T, et al Road area detection method based on DBNN for robot navigation using single camera in outdoor environments[J]. Industrial Robot: An International Journal, 2018, 45 (2): 275- 286
doi: 10.1108/IR-08-2017-0139
14 SEZER V An optimized path tracking approach considering obstacle avoidance and comfort[J]. Journal of Intelligent and Robotic Systems, 2022, 105 (1): 21
doi: 10.1007/s10846-022-01636-x
15 陈英龙, 宋甫俊, 张军豪, 等 基于临场感的遥操作机器人共享控制研究综述[J]. 浙江大学学报: 工学版, 2021, 55 (5): 831- 842
CHEN Yinglong, SONG Fujun, ZHANG Junhao, et al Telerobotic shared control strategy based on telepresence: a review[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (5): 831- 842
16 JAIN S, ARGALL B. Recursive Bayesian human intent recognition in shared-control robotics [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems . Madrid: IEEE, 2018: 3905-3912.
17 NARAYANAN V K, SPALANZANI A, BABEL M. A semi-autonomous framework for human-aware and user intention driven wheelchair mobility assistance [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems . Daejeon: IEEE, 2016: 4700-4707.
18 DENG X, YU Z L, LIN C, et al Self-adaptive shared control with brain state evaluation network for human-wheelchair cooperation[J]. Journal of Neural Engineering, 2020, 17 (4): 045005
doi: 10.1088/1741-2552/ab937e
19 EZEH C, TRAUTMAN P, DEVIGNE L, et al. Probabilistic vs linear blending approaches to shared control for wheelchair driving [C]// International Conference on Rehabilitation Robotics . London: IEEE, 2017: 835-840.
20 JOHANNINK T, BAHL S, NAIR A, et al. Residual reinforcement learning for robot control [C]// International Conference on Robotics and Automation . Montreal: IEEE, 2019: 6023-6029.
21 XI L, SHINO M Shared control design methodologies of an electric wheelchair for individuals with severe disabilities using reinforcement learning[J]. Journal of Advanced Simulation in Science and Engineering, 2020, 7 (2): 300- 319
doi: 10.15748/jasse.7.300
22 WANG Y, WANG S A new directional-intent recognition method for walking training using an omnidirectional robot[J]. Journal of Intelligent and Robotic Systems, 2017, 87 (2): 231- 246
doi: 10.1007/s10846-017-0503-z
23 LINDBLAD J, SLADOJE N Linear time distances between fuzzy sets with applications to pattern matching and classification[J]. IEEE Transactions on Image Processing, 2013, 23 (1): 126- 136
24 ZHANG D, WANG Y, LIU Z, et al Intelligent obstacle avoidance wheelchair based on fuzzy reasoning[J]. ICIC Express Letters, Part B: Applications, 2021, 12 (9): 831- 838
25 刘智敏, 叶宝林, 朱耀东, 等 基于深度强化学习的交通信号控制方法[J]. 浙江大学学报: 工学版, 2022, 56 (6): 1249- 1256
LIU Zhimin, YE Baolin, ZHU Yaodong, et al Traffic signal control method based on deep reinforcement learning[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (6): 1249- 1256
[1] 曹东兴,贾艳超,郭翔鹰,毛佳佳. 仿生六足折纸机器人结构设计与运动分析[J]. 浙江大学学报(工学版), 2024, 58(8): 1543-1555.
[2] 樊志伟,贾凯,张雷,邹风山,杜振军,刘明敏. 基于同步动态优化的移动机器人最优速度规划[J]. 浙江大学学报(工学版), 2024, 58(8): 1556-1564.
[3] 秦海鹏,秦瑞,施晓芬,朱小明. 基于模型预测的四足机器人运动控制[J]. 浙江大学学报(工学版), 2024, 58(8): 1565-1576.
[4] 黄松林,郑秀娟,谭笑月,胡兴,涂海燕,李康. 抗阻式颈部康复机器人系统设计[J]. 浙江大学学报(工学版), 2024, 58(7): 1479-1487.
[5] 陈栋,李伟达,张虹淼,李娟. 基于力反馈导纳控制的踝关节柔性外骨骼[J]. 浙江大学学报(工学版), 2024, 58(4): 772-778.
[6] 章一鸣,姚文广,陈海进. 动态环境下自主机器人的双机制切向避障[J]. 浙江大学学报(工学版), 2024, 58(4): 779-789.
[7] 宋明俊,严文,邓益昭,张俊然,涂海燕. 轻量化机器人抓取位姿实时检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 599-610.
[8] 刘宇庭,郭世杰,唐术锋,张学炜,李田田. 改进A*与ROA-DWA融合的机器人路径规划[J]. 浙江大学学报(工学版), 2024, 58(2): 360-369.
[9] 郭万金,赵伍端,利乾辉,赵立军,曹雏清. 基于集成概率模型的变阻抗机器人打磨力控制[J]. 浙江大学学报(工学版), 2023, 57(12): 2356-2366.
[10] 姜玉峰,陈东生. 基于深度强化学习的大口径轴孔装配策略[J]. 浙江大学学报(工学版), 2023, 57(11): 2210-2216.
[11] 薛雅丽,叶金泽,李寒雁. 基于改进强化学习的多智能体追逃对抗[J]. 浙江大学学报(工学版), 2023, 57(8): 1479-1486.
[12] 郭万金,赵伍端,于苏扬,赵立军,曹雏清. 无先验模型曲面的机器人打磨主动自适应在线轨迹预测方法[J]. 浙江大学学报(工学版), 2023, 57(8): 1655-1666.
[13] 仲重亮,刘云峰,朱伟东,朱赴东. 面向口腔种植的机器人多姿态轨迹平滑规划[J]. 浙江大学学报(工学版), 2023, 57(5): 1030-1037.
[14] 张超凡,乔一铭,曹露,王志刚,崔少伟,王硕. 基于神经形态的触觉滑动感知方法[J]. 浙江大学学报(工学版), 2023, 57(4): 683-692.
[15] 常同立,傅万斌. 自对准人工膝关节的人机匹配设计[J]. 浙江大学学报(工学版), 2023, 57(4): 753-759.