Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (4): 779-789    DOI: 10.3785/j.issn.1008-973X.2024.04.013
机械工程、能源工程     
动态环境下自主机器人的双机制切向避障
章一鸣1(),姚文广2,陈海进1,*()
1. 南通大学 江苏省专用集成电路设计重点实验室,江苏 南通,226001
2. 傲拓科技股份有限公司,江苏 南京,210012
Dual-mechanism tangential obstacle avoidance of autonomous robots in dynamic environment
Yiming ZHANG1(),Wenguang YAO2,Haijin CHEN1,*()
1. Jiangsu Provincial Key Laboratory of Application-Specific Integrated Circuit Design, Nantong University, Nantong 226001, China
2. Atekon Technology Limited Company, Nanjing 210012, China
 全文: PDF(3362 KB)   HTML
摘要:

针对机器人工作环境的动态随机性,提出面向双机制切向避障的改进人工势场法. 针对传统人工势场法的局部极小值陷阱问题,提出静态避障机制,在规划开始前对地图进行预处理,预测局部极小值点并将障碍物分成连通与非连通障碍物,结合切向避障实现静态切向避障. 以静态避障机制为基础,针对动态障碍物,提出动态避障机制,通过实时调整碰撞风险系数并选择系数最大的障碍物进行避障角补偿,实现动态切向避障. 通过状态决策统筹静态、动态切向避障机制与全局路径规划,实现混合规划与设计. 设计仿真和全向移动平台,对所提方法进行验证测试. 结果表明,所提方法在不同环境复杂下均有效解决了传统人工势场法的局部极小值陷阱问题,实现了动态环境下快速自主避障. 对比3种方法避开不同类型障碍物的平均耗时,所提方法比动态窗口法(DWA)提升55%,比时间弹性带法(TEB)提升40%;对比3种方法导航不同复杂度地图的平均耗时,所提方法比DWA提升39%,比TEB提升22%.

关键词: 动态环境人工势场法局部极小值陷阱双机制切向避障状态决策混合规划    
Abstract:

Aiming at the dynamic randomness of robot working environment, an improved artificial potential field method based on dual-mechanism tangential obstacle avoidance was proposed. Aiming at the local minimum trap of the traditional artificial potential field method, a static obstacle avoidance mechanism was proposed. The map was preprocessed before planning, local minimum points were predicted and obstacles were divided into connected and non-connected, and the static tangential obstacle avoidance was realized by combining the tangential obstacle avoidance. Based on the static obstacle avoidance mechanism, a dynamic obstacle avoidance mechanism was proposed for dynamic obstacles. By adjusting the collision risk coefficient in real time and selecting the obstacle with the largest coefficient for obstacle avoidance angle compensation, the dynamic tangential obstacle avoidance was realized. By state decision making, the static and dynamic tangential obstacle avoidance mechanism and the global path planning were integrated to realize the hybrid planning and design. Simulation and omnidirectional mobile platform was designed, and the proposed method was verified and tested. Results showed that the proposed method effectively resolved the local minimum trap of the traditional artificial potential field method under different complex environments, and realized fast autonomous obstacle avoidance under dynamic environments. Comparing the average obstacle avoidance time of three methods to avoid different types of obstacles, the proposed method was 55% better than the dynamic window approach (DWA) and 40% better than the time elastic band (TEB). Comparing the average navigation time of three methods for navigating maps of different complexity, the proposed method was 39% better than DWA and 22% better than TEB.

Key words: dynamic environment    artificial potential field method    local minimum trap    dual-mechanism tangential obstacle avoidance    status decision    hybrid planning
收稿日期: 2023-06-29 出版日期: 2024-03-27
CLC:  TP 242.6  
基金资助: 江苏省科技成果转化专项资金资助项目(BA2022001).
通讯作者: 陈海进     E-mail: 1242208320@qq.com;chen.hj@ntu.edu.cn
作者简介: 章一鸣(1998—),男,硕士生,从事路径规划与硬件加速研究. orcid.org/0009-0003-8495-3270. E-mail:1242208320@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
章一鸣
姚文广
陈海进

引用本文:

章一鸣,姚文广,陈海进. 动态环境下自主机器人的双机制切向避障[J]. 浙江大学学报(工学版), 2024, 58(4): 779-789.

Yiming ZHANG,Wenguang YAO,Haijin CHEN. Dual-mechanism tangential obstacle avoidance of autonomous robots in dynamic environment. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 779-789.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.04.013        https://www.zjujournals.com/eng/CN/Y2024/V58/I4/779

图 1  传统人工势场法的局部极小值陷阱
图 2  栅格地图金字塔缩放
图 3  障碍物密集区域搜索
图 4  连通障碍物斥力方向判定
图 5  非连通障碍物重要性评估
图 6  非连通障碍物斥力影响范围划分
图 7  非连通障碍物静态切向避障
图 8  斥力调整方向后的合力方向分析
图 9  静态切向避障流程图
图 10  动态切向避障补偿角的补偿原理
图 11  混合路径规划模块系统框图
图 12  混合路径规划状态决策过程
图 13  混合路径规划算法流程图
输入参数语义输入参数语义输出参数语义
$d \in \left[ {{r_{{\text{obs}}}},{{\overline r }_{\min }}} \right)$DN(近)$ \omega \in \left[-{20}^{\circ },{20}^{\circ }\right) $ZJ(零)${\text{output}} \in \left[ {0,2} \right)$ZE(紧急制动)
$d \in \left[ {{{\overline r }_{\min }},{{\overline r }_{\max }}} \right)$DM(适中)$ \omega \in \left[{20}^{\circ },{65}^{\circ }\right) $PS(正小)${\text{output}} \in \left[ {2,4} \right)$APF(人工势场法)
$d \in \left[ {{{\overline r }_{\max }},{\rho _{\text{o}}}} \right)$DF(远)$ \omega \in \left[{65}^{\circ },{90}^{\circ }\right] $PB(正大)${\text{output}} \in \left[ {4,6} \right)$LQM(向左切向避障)
$ \omega \in \left[-{90}^{\circ }, -{65}^{\circ }\right) $NB(负大)$\delta \in \left[ {{{30}^ \circ },{{150}^ \circ }} \right]$QB(大)${\text{output}} \in \left[ {6,8} \right]$RQM(向右切向避障)
$\omega \in \left[ { - {{65}^ \circ }, - {{20}^ \circ }} \right)$NS(负小)$\delta \in \left[ {0,{{30}^ \circ }} \right)$QS(小)
表 1  切向避障语义对照表
输入参数语义输入参数语义输出参数语义
$d \in \left[ {{\text{0}}{\text{.00}},{\text{0}}{\text{.04}}} \right) \;{\mathrm{m}}$HJ(很近)$ |\gamma |\in \left[{54}^{\circ },{72}^{\circ }\right) $JD(较大)$\varepsilon \in \left[ {0,2} \right)$ZE(零)
$d \in \left[ {{\text{0}}{\text{.40,2}}{\text{.00}}} \right)\;{\mathrm{m}} $JJ(较近)$ |\gamma |\in \left[{72}^{\circ },{90}^{\circ }\right] $HD(很大)$\varepsilon \in \left[ {2,4} \right)$PS(小)
$ d\in \left[\text{2}\text{.00},\text{4}\text{.00}\right)\;{\mathrm{m}} $SZ(适中)${V_{{\text{rel}}}} \in \left[ {{\text{0}}{\text{.00,0}}{\text{.08}}} \right){\mathrm{m}}\cdot {\mathrm{s}}^{-1}$HX(很小)$\varepsilon \in \left[ {4,6} \right)$MD(中)
$ d\in \left[\text{4}\text{.00},\text{6}\text{.00}\right)\;{\mathrm{m}} $JY(较远)${V_{{\text{rel}}}} \in \left[ {{\text{0}}{\text{.08,0}}{\text{.16}}} \right){\mathrm{m}}\cdot {\mathrm{s}}^{-1} $JX(较小)$\varepsilon \in \left[ {6,8} \right]$PB(大)
$ d\in \left[\text{6}\text{.00},\text{10}\text{.00}\right]\;{\mathrm{m}} $HY(很远)${V_{{\text{rel}}}} \in \left[ {{\text{0}}{\text{.16,0}}{\text{.24}}} \right){\mathrm{m}}\cdot {\mathrm{s}}^{-1} $SZ(适中)
$ |\gamma |\in \left[{0}^{\circ },{18}^{\circ }\right) $HX(较小)${V_{{\text{rel}}}} \in \left[ {{\text{0}}{\text{.24,0}}{\text{.32}}} \right){\mathrm{m}}\cdot {\mathrm{s}}^{-1} $JD(较大)
$ |\gamma |\in \left[{18}^{\circ },{36}^{\circ }\right) $JX(较小)${V_{{\text{rel}}}} \in \left[ {{\text{0}}{\text{.32,0}}{\text{.40}}} \right){\mathrm{m}}\cdot {\mathrm{s}}^{-1} $HD(很大)
$ |\gamma |\in \left[{36}^{\circ },{54}^{\circ }\right) $SZ(适中)
表 2  避障角补偿语义对照表
图 14  不同仿真环境下改进人工势场法性能对比
算法环境复杂度CT/sL/mS
沿边走简单2012.748.26
较复杂2021.580.68
复杂1952.7197.417
虚拟目标点简单2014.051.85
较复杂1426.096.47
复杂945.7169.77
虚拟障碍物简单2014.753.24
较复杂1825.195.56
复杂1344.5166.17
本研究简单2012.242.22
较复杂2020.978.85
复杂1835.4130.19
表 3  不同环境复杂度时不同算法的规划结果统计
图 15  Gazebo仿真环境的避障验证
参数数值参数数值
最大线速度${v_{\mathrm{l}}}$/(m·s?1)0.4全局代价地图可视化
话题发布频率${f_{{\mathrm{vgc}}}}$/Hz
1.0
最大角速度${\omega _{\mathrm{l}}}$/(rad·s?1)1.5局部代价地图可视化
话题发布频率${f_{{\mathrm{vlc}}}}$/Hz
3.0
全局代价地图
刷新频率${f_{{\mathrm{gc}}}}$/Hz
1.5速度控制指令话题
发布频率${{{f}}_{{\text{cmd}}}}$/Hz
10.0
局部代价地图
刷新频率${f_{{\mathrm{lc}}}}$/Hz
5.0
表 4  仿真环境下混合路径规划模块实验参数
图 16  室内环境下静态避障结果
图 17  全向移动平台测试结果比对
图 18  室内环境下动态避障结果
12 MIN H, LIN Y, WANG S, et al Path planning of mobile robot by mixing experience with modified artificial potential field method[J]. Advances in Mechanical Engineering, 2015, 7 (12): 1- 17
13 KHATIB O Real time obstacle avoidance for manipulators and mobile robots[J]. International Journal of Robotics Research, 1986, 5 (1): 90- 98
doi: 10.1177/027836498600500106
14 HAO G, LV Q, HUANG Z, et al UAV path planning based on improved artificial potential field method[J]. Aerospace, 2023, 10 (6): 562
15 林洁, 张志安 改进人工势场法的路径规划研究[J]. 机械与电子, 2022, 40 (3): 65- 70
LIN Jie, ZHANG Zhi’an Research on path planning of improved artificial potential field[J]. Machinery and Electronics, 2022, 40 (3): 65- 70
16 ZHENG Y, SHAO X, CHEN Z, et al Improvements on the virtual obstacle method[J]. International Journal of Advanced Robotic Systems, 2020, 17 (2): 1- 9
1 TAN C S, MOHD-MOKHTAR R, ARSHAD M R A comprehensive review of coverage path planning in robotics using classical and heuristic algorithms[J]. IEEE Access, 2021, 9: 119310- 119342
doi: 10.1109/ACCESS.2021.3108177
2 SÁNCHEZ-LBÁÑEZ J R, PÉREZ-DEL-PULGAR C J, GARCÍA-CEREZO A Path planning for autonomous mobile robots: a review[J]. Sensors, 2021, 21 (23): 7898
doi: 10.3390/s21237898
3 MOLINOS E J, LLAMAZARES Á, OCAÑA M Dynamic window based approaches for avoiding obstacles in moving[J]. Robotics and Autonomous Systems, 2019, 118: 112- 130
doi: 10.1016/j.robot.2019.05.003
4 代婉玉, 张丽娟, 吴佳峰, 等 改进TEB算法的局部路径规划算法研究[J]. 计算机工程与应用, 2022, 58 (8): 283- 288
DAI Wanyu, ZHANG Lijuan, WU Jiafeng, et al Research on local path planning algorithm based on improved TEB algorithm[J]. Computer Engineering and Applications, 2022, 58 (8): 283- 288
5 SZCZEPANSKI R Safe artificial potential field: novel local path planning algorithm maintaining safe distance from obstacles[J]. IEEE Robotics and Automation Letters, 2023, 8 (8): 4823- 4830
doi: 10.1109/LRA.2023.3290819
6 MA H, PEI W, ZHANG Q Research on path planning algorithm for driverless vehicles[J]. Mathematics, 2022, 10 (15): 2555
7 AZZABI A, NOURI K An advanced potential field method proposed for mobile robot path planning[J]. Transactions of the Institute of Measurement and Control, 2019, 41 (11): 3132- 3144
doi: 10.1177/0142331218824393
8 YANG W, WU P, ZHOU X, et al Improved artificial potential field and dynamic window method for amphibious robot fish path planning[J]. Applied Sciences, 2021, 11 (5): 2114
doi: 10.3390/app11052114
9 TONG X, YU S, LIU G, et al A hybrid formation path planning based on A* and multi-target improved artificial potential field algorithm in the 2D random[J]. Advanced Engineering Informatics, 2022, 54: 101755
doi: 10.1016/j.aei.2022.101755
10 LUO J, WANG Z X, PAN K L Reliable path planning algorithm based on improved artificial potential field method[J]. IEEE Access, 2022, 10: 108276- 108284
doi: 10.1109/ACCESS.2022.3212741
[1] 林凯,梁新武,蔡纪源. 基于重投影深度差累积图与静态概率的动态RGB-D SLAM算法[J]. 浙江大学学报(工学版), 2022, 56(6): 1062-1070.
[2] 陈楠,寿黎但,陈刚,陈珂,胡天磊. 面向动态环境的移动对象自适应索引方法[J]. J4, 2013, 47(3): 442-448.
[3] 陈家乾,柳玉甜,何衍,蒋静坪. 基于栅格模型和样本集合的动态环境地图创建[J]. J4, 2011, 45(5): 794-798.
[4] 江万里 熊蓉 褚健. 复杂动态环境下基于侧滑力的局部路径规划[J]. J4, 2007, 41(10): 1609-1614.