Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (4): 772-778    DOI: 10.3785/j.issn.1008-973X.2024.04.012
机械工程、能源工程     
基于力反馈导纳控制的踝关节柔性外骨骼
陈栋(),李伟达*(),张虹淼,李娟
1. 苏州大学 机电工程学院,江苏省先进机器人技术重点实验室,江苏 苏州 215021
Ankle flexible exoskeleton based on force feedback admittance control
Dong CHEN(),Weida LI*(),Hongmiao ZHANG,Juan LI
1. School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215021, China
 全文: PDF(2648 KB)   HTML
摘要:

针对踝关节康复训练的需求,分析踝关节的运动机理,运用模块化驱动单元与鲍登线,设计轻量化、易穿戴的柔性踝关节外骨骼机器人,实现踝关节跖屈/背屈、内/外翻的运动辅助. 柔性外骨骼在背屈和跖屈阶段分别采用位置控制和力矩控制. 位置控制以传统PID为主;力矩控制以力为反馈信号,建立交互力差值与鲍登线内芯位移补偿之间的导纳模型. 通过Sigmoid变形函数实现导纳参数的动态调控,满足辅助力矩输出和人机交互柔顺性的需求. 实验结果表明,位置跟踪误差不超过0.46 cm,力输出误差为?1.5~1.5 N,能够满足人体康复训练的需求.

关键词: 踝关节康复训练柔性外骨骼力反馈导纳控制    
Abstract:

In response to the need for ankle rehabilitation training, a lightweight, easy-to-wear flexible ankle exoskeleton robot was designed using modular drive units and Bowden cables through analysis of ankle joint mechanics. The robot can provide assistance for ankle plantarflexion/dorsiflexion and inversion/eversion movements. Position control and torque control are used for flexible exoskeleton during the dorsiflexion and plantarflexion stages, respectively. Position control is mainly based on traditional proportional integral derivative(PID), while torque control uses force as a feedback signal to establish an admittance model between the interaction force difference and the Bowden cable core displacement compensation. The admittance parameters are dynamically adjusted through the Sigmoid deformation function to meet the requirements of assistive torque output and human-machine interaction compliance. Experimental data showed that the position tracking error was stable within 0.46 cm, and the force output error was stable within ?1.5-1.5 N, meeting the needs of human rehabilitation training.

Key words: ankle joint    rehabilitation training    flexible exoskeleton    force feedback    admittance control
收稿日期: 2023-04-13 出版日期: 2024-03-27
CLC:  TP 242  
通讯作者: 李伟达     E-mail: mini1624365292@outlook.com;hit_liweida@163.com
作者简介: 陈栋(1998—),男,硕士生,从事康复机器人研究. orcid.org/0009-0006-0184-4012. E-mail:mini1624365292@outlook.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈栋
李伟达
张虹淼
李娟

引用本文:

陈栋,李伟达,张虹淼,李娟. 基于力反馈导纳控制的踝关节柔性外骨骼[J]. 浙江大学学报(工学版), 2024, 58(4): 772-778.

Dong CHEN,Weida LI,Hongmiao ZHANG,Juan LI. Ankle flexible exoskeleton based on force feedback admittance control. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 772-778.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.04.012        https://www.zjujournals.com/eng/CN/Y2024/V58/I4/772

图 1  人体踝关节的基本运动类型
图 2  人体关节力矩分析
图 3  跖屈运动的辅助机构
图 4  内外翻及背屈运动的辅助机构
图 5  绳驱动单元结构组成
图 6  外骨骼样机整体展示
图 7  机器人坐标系及运动学分析示意图
图 8  鲍登线拉力与位移数学模型示意图
图 9  鲍登线期望力与位移曲线
图 10  鲍登线偏移补偿
图 11  基于力反馈的导纳控制框图
图 12  导纳参数的自适应曲线
图 13  跑步机行走实验
图 14  内芯位移随时间变化的曲线
图 15  跖屈阶段的力变化曲线
图 16  背屈阶段的内芯位移曲线
1 第二次全国残疾人抽样调查领导小组, 中华人民共和国国家统计局 2006年第二次全国残疾人抽样调查主要数据公报[J]. 中国康复理论与实践, 2006, 12 (12): 1013
Leading Group for the Second China National Sample Survey on Disability, National Bureau of Statistics of the People’s Republic of China Communique on major statistics of the second china national sample survey on disability[J]. Chinese Journal of Rehabilitation Theory and Practice, 2006, 12 (12): 1013
doi: 10.3969/j.issn.1006-9771.2006.12.001
2 ASBECK A T, DE ROSSI S M M, GALIANA I, et al Stronger, smarter, softer: next-generation wearable robots[J]. IEEE Robotics and Automation Magazine, 2014, 21 (4): 22- 33
doi: 10.1109/MRA.2014.2360283
3 COLOMBO G, WIRZ M, DIETZ V Driven gait orthosis for improvement of locomotor training in paraplegic patients[J]. Spinal Cord, 2001, 39 (5): 252- 255
doi: 10.1038/sj.sc.3101154
4 BANALA S K, KIM S H, AGRAWAL S K, et al Robot assisted gait training with active leg exoskeleton (ALEX)[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17 (1): 2- 8
doi: 10.1109/TNSRE.2008.2008280
5 WINFREE K N, STEGALL P, AGRAWAL S K. Design of a minimally constraining, passively supported gait training exoskeleton: ALEX II [C]// 2011 IEEE International Conference on Rehabilitation Robotics . Zurich: IEEE, 2011: 1–6.
6 ASBECK A T, DE ROSSI S M M, HOLT K G, et al A biologically inspired soft exosuit for walking assistance[J]. The International Journal of Robotics Research, 2015, 34 (6): 744- 762
doi: 10.1177/0278364914562476
7 WEHNER M, QUINLIVAN B, AUBIN P M, et al. A lightweight soft exosuit for gait assistance [C]// 2013 IEEE International Conference on Robotics and Automation . Karlsruhe: IEEE, 2013: 3362–3369.
8 PARK J, PARK H, KIM J Performance estimation of the lower limb exoskeleton for plantarflexion using surface electromyography (sEMG) signals[J]. Journal of Biomechanical Science and Engineering, 2017, 12 (2): 16- 00595
9 GASPARRI G M, BAIR M O, LIBBY R P, et al. Verification of a robotic ankle exoskeleton control scheme for gait assistance in individuals with cerebral palsy [C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) . Madrid: IEEE, 2018: 4673–4678.
10 CHEN L, CHEN C, WANG Z, et al A novel lightweight wearable soft exosuit for reducing the metabolic rate and muscle fatigue[J]. Biosensors, 2021, 11 (7): 215
doi: 10.3390/bios11070215
11 BAE J, SIVIY C, ROULEAU M, et al. A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke [C] // 2018 IEEE International Conference on Robotics and Automation (ICRA) . Brisbane: IEEE, 2018: 2820–2827.
12 QUINLIVAN B T, LEE S, MALCOLM P, et al Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit[J]. Science Robotics, 2017, 2 (2): 4416
doi: 10.1126/scirobotics.aah4416
13 DING Y, KIM M, KUINDERSMA S, et al Human-in-the-loop optimization of hip assistance with a soft exosuit during walking[J]. Science Robotics, 2018, 3 (15): 5438
doi: 10.1126/scirobotics.aar5438
14 SHAN H, JIANG C, MAO Y, et al. Design and control of a wearable active knee orthosis for walking assistance [C]// 2016 IEEE 14th International Workshop on Advanced Motion Control (AMC) . Auckland: IEEE, 2016: 51–56.
15 ZHANG Q, SHEN X, WANG X, et al. Development of a small clamper for tendon-sheath artificial muscle [C]// 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) . Stuttgart: IEEE, 2018: 1–6.
16 郑进忠. 踝关节柔性外骨骼设计与控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
ZHENG Jinzhong. Research on the design and control of flexible ankle exoskeleton [D]. Harbin: Harbin Institute of Technology, 2018.
17 NGUYEN N D, BUI D T, TRUONG P H, et al Classification of five ambulatory activities regarding stair and incline walking using smart shoes[J]. IEEE Sensors Journal, 2018, 18 (13): 5422- 5428
doi: 10.1109/JSEN.2018.2837674
18 叶中. 面向踝关节康复训练的柔性外骨骼机器人研究[D]. 苏州: 苏州大学, 2022.
YE Zhong. Research on soft exoskeleton robot for ankle rehabilitation training [D]. Suzhou: Soochow University, 2022.
19 蔡自兴. 机器人学[M]. 北京: 清华大学出版社, 2000.
20 CHRISTIAN O, RANJAN M, YOSHIHIKO N. Unified impedance and admittance control [C]// 2010 IEEE International Conference on Robotics and Automation (ICRA) . Anchorage: IEEE, 2010: 554–561.
21 余红刚. 下肢柔性外骨骼的研究与设计[D]. 成都: 电子科技大学, 2020.
YU Honggang. Research and design of flexible exoskeleton of lower extremity [D]. Chengdu: University of Electronic Science and Technology of China, 2020.
22 张浩. 柔性膝关节外骨骼结构设计和控制系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
ZHANG Hao. Structural design of flexible knee exoskeleton and control system research [D]. Harbin: Harbin Institute of Technology, 2020.
[1] 杨灿军,彭桢哲,徐铃辉,杨巍. 柔性膝关节保护外骨骼及其行走助力方法设计[J]. 浙江大学学报(工学版), 2021, 55(2): 213-221.
[2] 汤自林,高霄,肖晓晖. 基于模仿学习的变刚度人机协作搬运控制[J]. 浙江大学学报(工学版), 2021, 55(11): 2091-2099.
[3] 郭超, 侯增选, 杨广卿, 郑栓柱. 采用力反馈技术的毛笔建模[J]. 浙江大学学报(工学版), 2017, 51(9): 1735-1744.
[4] 郭超,侯增选, 杨广卿, 郑栓柱. 力反馈技术水墨扩散仿真[J]. 浙江大学学报(工学版), 2016, 50(9): 1695-1702.
[5] 魏春雨, 周晓军, 魏燕定, 黎建军. 汽车驾驶模拟器转向盘能量反馈调节[J]. J4, 2013, 47(2): 244-248.