机械工程、能源工程 |
|
|
|
|
基于力反馈导纳控制的踝关节柔性外骨骼 |
陈栋( ),李伟达*( ),张虹淼,李娟 |
1. 苏州大学 机电工程学院,江苏省先进机器人技术重点实验室,江苏 苏州 215021 |
|
Ankle flexible exoskeleton based on force feedback admittance control |
Dong CHEN( ),Weida LI*( ),Hongmiao ZHANG,Juan LI |
1. School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215021, China |
引用本文:
陈栋,李伟达,张虹淼,李娟. 基于力反馈导纳控制的踝关节柔性外骨骼[J]. 浙江大学学报(工学版), 2024, 58(4): 772-778.
Dong CHEN,Weida LI,Hongmiao ZHANG,Juan LI. Ankle flexible exoskeleton based on force feedback admittance control. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 772-778.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.04.012
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I4/772
|
1 |
第二次全国残疾人抽样调查领导小组, 中华人民共和国国家统计局 2006年第二次全国残疾人抽样调查主要数据公报[J]. 中国康复理论与实践, 2006, 12 (12): 1013 Leading Group for the Second China National Sample Survey on Disability, National Bureau of Statistics of the People’s Republic of China Communique on major statistics of the second china national sample survey on disability[J]. Chinese Journal of Rehabilitation Theory and Practice, 2006, 12 (12): 1013
doi: 10.3969/j.issn.1006-9771.2006.12.001
|
2 |
ASBECK A T, DE ROSSI S M M, GALIANA I, et al Stronger, smarter, softer: next-generation wearable robots[J]. IEEE Robotics and Automation Magazine, 2014, 21 (4): 22- 33
doi: 10.1109/MRA.2014.2360283
|
3 |
COLOMBO G, WIRZ M, DIETZ V Driven gait orthosis for improvement of locomotor training in paraplegic patients[J]. Spinal Cord, 2001, 39 (5): 252- 255
doi: 10.1038/sj.sc.3101154
|
4 |
BANALA S K, KIM S H, AGRAWAL S K, et al Robot assisted gait training with active leg exoskeleton (ALEX)[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17 (1): 2- 8
doi: 10.1109/TNSRE.2008.2008280
|
5 |
WINFREE K N, STEGALL P, AGRAWAL S K. Design of a minimally constraining, passively supported gait training exoskeleton: ALEX II [C]// 2011 IEEE International Conference on Rehabilitation Robotics . Zurich: IEEE, 2011: 1–6.
|
6 |
ASBECK A T, DE ROSSI S M M, HOLT K G, et al A biologically inspired soft exosuit for walking assistance[J]. The International Journal of Robotics Research, 2015, 34 (6): 744- 762
doi: 10.1177/0278364914562476
|
7 |
WEHNER M, QUINLIVAN B, AUBIN P M, et al. A lightweight soft exosuit for gait assistance [C]// 2013 IEEE International Conference on Robotics and Automation . Karlsruhe: IEEE, 2013: 3362–3369.
|
8 |
PARK J, PARK H, KIM J Performance estimation of the lower limb exoskeleton for plantarflexion using surface electromyography (sEMG) signals[J]. Journal of Biomechanical Science and Engineering, 2017, 12 (2): 16- 00595
|
9 |
GASPARRI G M, BAIR M O, LIBBY R P, et al. Verification of a robotic ankle exoskeleton control scheme for gait assistance in individuals with cerebral palsy [C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) . Madrid: IEEE, 2018: 4673–4678.
|
10 |
CHEN L, CHEN C, WANG Z, et al A novel lightweight wearable soft exosuit for reducing the metabolic rate and muscle fatigue[J]. Biosensors, 2021, 11 (7): 215
doi: 10.3390/bios11070215
|
11 |
BAE J, SIVIY C, ROULEAU M, et al. A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke [C] // 2018 IEEE International Conference on Robotics and Automation (ICRA) . Brisbane: IEEE, 2018: 2820–2827.
|
12 |
QUINLIVAN B T, LEE S, MALCOLM P, et al Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit[J]. Science Robotics, 2017, 2 (2): 4416
doi: 10.1126/scirobotics.aah4416
|
13 |
DING Y, KIM M, KUINDERSMA S, et al Human-in-the-loop optimization of hip assistance with a soft exosuit during walking[J]. Science Robotics, 2018, 3 (15): 5438
doi: 10.1126/scirobotics.aar5438
|
14 |
SHAN H, JIANG C, MAO Y, et al. Design and control of a wearable active knee orthosis for walking assistance [C]// 2016 IEEE 14th International Workshop on Advanced Motion Control (AMC) . Auckland: IEEE, 2016: 51–56.
|
15 |
ZHANG Q, SHEN X, WANG X, et al. Development of a small clamper for tendon-sheath artificial muscle [C]// 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) . Stuttgart: IEEE, 2018: 1–6.
|
16 |
郑进忠. 踝关节柔性外骨骼设计与控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. ZHENG Jinzhong. Research on the design and control of flexible ankle exoskeleton [D]. Harbin: Harbin Institute of Technology, 2018.
|
17 |
NGUYEN N D, BUI D T, TRUONG P H, et al Classification of five ambulatory activities regarding stair and incline walking using smart shoes[J]. IEEE Sensors Journal, 2018, 18 (13): 5422- 5428
doi: 10.1109/JSEN.2018.2837674
|
18 |
叶中. 面向踝关节康复训练的柔性外骨骼机器人研究[D]. 苏州: 苏州大学, 2022. YE Zhong. Research on soft exoskeleton robot for ankle rehabilitation training [D]. Suzhou: Soochow University, 2022.
|
19 |
蔡自兴. 机器人学[M]. 北京: 清华大学出版社, 2000.
|
20 |
CHRISTIAN O, RANJAN M, YOSHIHIKO N. Unified impedance and admittance control [C]// 2010 IEEE International Conference on Robotics and Automation (ICRA) . Anchorage: IEEE, 2010: 554–561.
|
21 |
余红刚. 下肢柔性外骨骼的研究与设计[D]. 成都: 电子科技大学, 2020. YU Honggang. Research and design of flexible exoskeleton of lower extremity [D]. Chengdu: University of Electronic Science and Technology of China, 2020.
|
22 |
张浩. 柔性膝关节外骨骼结构设计和控制系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. ZHANG Hao. Structural design of flexible knee exoskeleton and control system research [D]. Harbin: Harbin Institute of Technology, 2020.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|