Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (11): 2290-2298    DOI: 10.3785/j.issn.1008-973X.2024.11.010
计算机技术、控制工程     
低抖动快锁定10.9~12.0 GHz电荷泵锁相环
展永政1(),李仁刚1,李拓1,邹晓峰1,周玉龙1,胡庆生2,3,李连鸣3
1. 山东云海国创云计算装备产业创新中心有限公司,山东 济南 250101
2. 东南大学 射频与光电集成电路研究所,江苏 南京 210096
3. 东南大学 信息科学与工程学院,江苏 南京 210096
Low-jitter fast-locked 10.9−12.0 GHz charge-pump phase-locked loop
Yongzheng ZHAN1(),Rengang LI1,Tuo LI1,Xiaofeng ZOU1,Yulong ZHOU1,Qingsheng HU2,3,Lianming LI3
1. Shandong Yunhai Guochuang Cloud Computing Equipment Industry Innovation Limited Company, Jinan 250101, China
2. Institute of RF- and OE-ICs, Southeast University, Nanjing 210096, China
3. School of Information Science and Engineering, Southeast University, Nanjing 210096, China
 全文: PDF(3230 KB)   HTML
摘要:

基于65 nm CMOS 工艺,设计适用于高速SerDes串行链路的低抖动高速电荷泵锁相环(CPPLL)电路. 通过优化环路带宽以及压控振荡器(VCO)、电荷泵和鉴频鉴相器的电路结构, 抑制电压纹波和内部噪声引起的抖动, 以在满足SerDes链路需要的宽频范围和高速要求的同时, 电荷泵锁相环能够获得较小的抖动偏差和稳定的时钟信号. 包括整个焊盘在内的芯片面积为0.309 mm2. 测试结果表明, 电荷泵锁相环能够实现10.9~12 GHz的输出时钟信号, 其在10 MHz频偏处的相位噪声、参考杂散和品质因数(FoM)分别为?111.47 dBc/Hz、?25.14 dBc和?223.5 dB. 当输入参考频率为706.25 MHz 时, CPPLL能够在600 μs后输出稳定的11.3 GHz时钟信号, 且RMS抖动为973.9 fs, 约为0.065 UI. 在电源电压为1.2 V下, 电路的功耗为47.3 mW. 所设计的锁相环(PLL)电路能够适用于20 Gb/s及以上的高速通信链路系统.

关键词: 压控振荡器(VCO)电荷泵低抖动串行链路高速    
Abstract:

A low-jitter high-speed charge-pump phase-locked loop (CPPLL) suitable for high-speed SerDes serial link was designed using 65 nm CMOS technology. Loop bandwidth and circuit structure of voltage-controlled oscillator (VCO), charge pump (CP), phase frequency detector (PFD) were optimized to reduce jitter caused by voltage ripple and internal noise. CPPLL can achieve a stable clock signal with the smaller jitter offset while meeting the wide frequency range and high speed requirements of SerDes link. Chip area including the entire pads is 0.309 mm2. The measurement results show that CPPLL can generate a 10.9-12 GHz clock signal and exhibit a phase noise of ?111.47 dBc/Hz and a reference spur of ?25.14 dBc and a figure-of-merit (FoM) of ?223.5 dB at 10 MHz offset. It takes 600 μs to generate a stable 11.3 GHz clock signal, and its RMS jitter is 973.9 fs when the reference frequency is 706.25 MHz, which is approximately 0.065 UI. The power consumption is 47.3 mW at the supply voltage of 1.2 V. The proposed phase-locked loop (PLL) is suitable for high-speed communication link systems at 20 Gb/s and above.

Key words: voltage-controlled oscillator (VCO)    charge pump    low jitter    serial link    high speed
收稿日期: 2023-10-08 出版日期: 2024-10-23
CLC:  TN 432  
基金资助: 山东省自然科学基金资助项目(ZR2022QF146);山东省自然科学基金创新发展联合基金资助项目(ZR2023LZH004);中国博士后科学基金资助项目(2024M751268).
作者简介: 展永政 (1989—),男,高级工程师,博士,从事高速集成电路设计的研究. orcid.org 0000-0002-1885-5950. E-mail:sdzyz1989@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
展永政
李仁刚
李拓
邹晓峰
周玉龙
胡庆生
李连鸣

引用本文:

展永政,李仁刚,李拓,邹晓峰,周玉龙,胡庆生,李连鸣. 低抖动快锁定10.9~12.0 GHz电荷泵锁相环[J]. 浙江大学学报(工学版), 2024, 58(11): 2290-2298.

Yongzheng ZHAN,Rengang LI,Tuo LI,Xiaofeng ZOU,Yulong ZHOU,Qingsheng HU,Lianming LI. Low-jitter fast-locked 10.9−12.0 GHz charge-pump phase-locked loop. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2290-2298.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.11.010        https://www.zjujournals.com/eng/CN/Y2024/V58/I11/2290

图 1  延迟型锁相环的框图
图 2  LC振荡型电荷泵锁相环的框图
图 3  LC振荡型电荷泵锁相环的相位噪声曲线图
图 4  不同环路带宽下的锁定时间变化曲线
图 5  互补交叉耦合负阻LC-VCO的电路图
图 6  交叉耦合管后的VCO输出波形
图 7  不同工艺角下VCO 的压控特性曲线
图 8  VCO 相位噪声
图 9  基于共源共栅的CP电路图
图 10  CP电流匹配的特性曲线
图 11  基于TSPC的PFD电路图
图 12  PFD+CP级联后充电过程
图 13  CP漏电流曲线
图 14  芯片显微照片
图 15  CPPLL的测试平台
图 16  不同工艺角下12.5 GHz CPPLL 频率锁定曲线
图 17  SS工艺角下的CPPLL抖动性能
图 18  锁相环芯片的瞬态测试曲线
图 19  锁相环芯片的相位噪声测试曲线(@11.2 GHz)
图 20  锁相环芯片的参考杂散测试曲线(@11.3 GHz)
文献VCO锁频范围/GHzRMS /ps相位噪声/(dB·Hz?1)参考杂散/dB功耗/mW面积/mm2FoM/dB
本文LC10.9~12.00.9739?111.47@10 MHz?25.1447.30.309?223.5
文献[24]LC1.25~3.1252.1743.6?216.8
文献[25]LC6.3~8.71.2?116.6@1 MHz<?50500.72?161.4
文献[26]LC3.60.043?141.1@1 MHz?80.347.270.497?258.7
文献[27]Ring3.27.5?107.9@10 MHz?45.52.730.047?218.1
文献[28]Ring1.25~3.1251.65?47.6328.80.384?221.1
文献[29]Ring1.2~2.50.25?124.8@1 MHz?468.50.0066?242.7
表 1  65 nm 工艺下的CPPLL性能总结与比较
1 ROSHAN-ZAMIR A, IWAI T, FAN Y H, et al. A 56 Gb/s PAM4 receiver with low-overhead threshold and edge-based DFE FIR and IIR-tap adaptation in 65nm CMOS [C]// IEEE Custom Integrated Circuits Conference . San Diego: IEEE, 2018: 1-4.
2 SEGAL Y, LAUFER A, KHAIRI A, et al. A 1.41 pJ/b 224 Gb/s PAM-4 SerDes receiver with 31dB loss compensation [C]// International Solid-State Circuits Conference . San Francisco: IEEE, 2022: 114-115.
3 POON C F, ZHANG W F, CHO J H, et al A 1.24-pJ/b 112-Gb/s (870 Gb/s/mm) transceiver for in-package links in 7-nm FinFET[J]. IEEE Journal of Solid-State Circuits, 2022, 57 (4): 1199- 1210
doi: 10.1109/JSSC.2022.3141802
4 LU P. A 25.6-27.5GHz phase-locked loop for SerDes transceiver clocking in 5nm FinFET [C]// IEEE Nordic Circuits and Systems Conference . Oslo: IEEE, 2021: 1-4.
5 辛可为, 吕方旭, 王建业, 等 适用于4通道100 Gbps SerDes的两级架构正交12.5 GHz低功耗低抖动时钟发生器[J]. 空军工程大学学报: 自然科学版, 2019, 20 (5): 64- 69
XIN Kewei, LV Fangxu, WANG Jianye, et al A 12.5 GHz clock generator applicable for 4-way 100 Gbps high-speed serial interface circuits[J]. Journal of Air Force Engineering University: Natural Science Edition, 2019, 20 (5): 64- 69
6 李沛杰, 沈剑良, 苑红晓, 等 一种应用于软件定义互连系统的多协议SerDes电路[J]. 电子学报, 2021, 49 (4): 817- 823
LI Peijie, SHEN Jianliang, YUAN Hongxiao, et al A multi-protocol SerDes circuit for the application in software defined interconnection system[J]. ACTA Electronica Sinica, 2021, 49 (4): 817- 823
7 SAURABH K, KUMAR S Y A low-phase-noise self-aligned sub-harmonically injection-locked PLL using aperture phase detector-based DLL windowing technique[J]. IEEE Access, 2023, 11: 6641- 6655
doi: 10.1109/ACCESS.2023.3237539
8 YANG X, LIU F, HUO Z L Wide-range and high-accuracy four-phase DLL with the adaptive-bandwidth scheme[J]. Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2022, 49 (1): 194- 201
9 BAE W. State-of-the-art circuit techniques for low-jitter phase-locked loops: advanced performance benchmark FOM based on an extensive survey [C]// IEEE International Symposium on Circuits and Systems . Daegu: IEEE, 2021: 1-5.
10 LIU H L, SUN Z, HUANG H Y, et al A 265-mu W fractional-N digital PLL with seamless automatic switching sub-sampling/sampling feedback path and duty-cycled frequency-locked loop in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2019, 54 (12): 256- 257
11 LIU L X, JI Y L, LIAO X F, et al A 0.8-V, 2.55-GHz, 2.62-mW charge-pump PLL with high spectrum purity[J]. IEEE Transactions on Very Large Scale Integration Systems, 2022, 30 (2): 113- 122
doi: 10.1109/TVLSI.2022.3140457
12 ZHANG Z, YANG J, LIU L, et al A 0.9-2.25 GHz sub-0.2-mW/GHz compact low-voltage low-power hybrid digital PLL with loop bandwidth-tracking technique[J]. IEEE Transactions on Very Large Scale Integration Systems, 2018, 26 (5): 933- 944
doi: 10.1109/TVLSI.2018.2797280
13 吴金, 孙亚伟, 彭杰, 等 一种应用于阵列TDC的低抖动锁相环设计[J]. 电子学报, 2020, 48 (9): 1703- 1710
WU Jin, SUN Yawei, PENG Jie, et al Design of a low jitter phase locked loop for array TDC[J]. ACTA Electronica Sinica, 2020, 48 (9): 1703- 1710
14 邓涵, 韦雪明, 尹仁川, 等 一种自适应可重构宽带低抖动锁相环时钟[J]. 微电子学, 2023, 53 (1): 89- 94
DENG Han, WEI Xueming, YIN Renchuan, et al A wideband low jitter PLL clock with adaptive reconfigurable charge pump[J]. Microelectronics, 2023, 53 (1): 89- 94
15 FISCHETTE D. A 45-nm SOI-CMOS dual-PLL processor clock system for multi-protocol I/O [C]// IEEE International Solid-State Circuits Conference. San Francisco: IEEE, 2010: 246-248.
16 ZHAN Y Z, LI T, ZOU X F, et al. Low-power 25Gb/s 16: 1 multiplexer for 400Gb/s ethernet PHY [C]// 2nd International Conference on Applied Physics and Computing . Ottawa: Elsevier, 2021.
17 ZHANG Y, WEN Z P, HOU X P. A 0.78mW inductor-less 21GHz CML frequency divider in 65nm CMOS [C]// IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference . Chengdu: IEEE, 2019: 1395-1399.
18 KUNDERT K. Predicting the phase noise and jitter of PLL based frequency synthesizers [Z]. Designer’s Guide Consulting, Inc. 2006.
19 SOPHIYA S S, YELLAMPALLI S S. Design of 6.7GHz~7. 518GHz cross coupled LC-VCO in 180nm CMOS technology [C]// 5th International Conference on Computing Methodologies and Communication . Erode: IEEE, 2021: 665-671.
20 MAHESHWARI N, CHAUHAN P S, PANDA D K. Design and optimization of switched capacitor array based differential CMOS LC VCO for wide band application [C]// International Conference on Information, Communication, Instrumentation and Control . Indore: IEEE, 2017.
21 SAMARAS D, HATZOPOULOS A. A low-power low-noise 65nm charge pump using mismatch compensation and smoothing capacitor [C]// 11th International Conference on Modern Circuits and Systems Technologies . Bremen: IEEE, 2022: 1-4.
22 GHASEMIAN H, BAHRAMI A, JAMADI B, et al. Implement of two new high-speed low-power PFDs with low blind zone and dead zone in 65nm CMOS technology [C]// 28th Iranian Conference on Electrical Engineering . Tabriz: IEEE, 2020: 1-6.
23 BEUKEMA T. Topics on design and analysis of high data rate SerDes system [EB/OL]. [2019-11-30]. https://picture.iczhiku.com/resource/eetop/SYKhWDtRRtzOyvvn.pdf.
24 YUAN H, CHEN J, LIANG B, et al. A radiation-immune low-jitter high-frequency PLL for SerDes [C]// CCF National Conference on Computer Engineering and Technology . Xiamen: Elsevier, 2017: 45-51.
25 ZHOU P Z, WU L, LI C, et al. A 6.3-8.7 GHz phase-locked loop in 65nm CMOS [C]// IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition . Guangzhou: Elsevier, 2021: 1-4.
26 HUANG Y B, CHEN Y, ZHAO B, et al A 3.6-GHz type-II sampling PLL with a differential parallel-series double-edge S-PD scoring 43.1-fs RMS jitter, −258.7-dB FOM, and −75.17-dBc reference spur[J]. IEEE Transactions on Very Large Scale Integration Systems, 2023, 31 (2): 188- 198
doi: 10.1109/TVLSI.2022.3229342
27 KIM D, CHO S H. A supply noise insensitive PLL with a rail-to-rail swing ring oscillator and a wideband noise suppression loop [C]// Symposium on VLSI Circuits . Kyoto: Elsevier, 2017: 180-181.
28 YUAN H Z, GUO Y, LIU Y, et al A self-biased low-jitter process-insensitive phase-locked loop for 1.25Gb/s-6.25Gb/s SerDes[J]. Chinese Journal of Electronics, 2018, 27 (5): 1009- 1014
doi: 10.1049/cje.2018.02.003
29 GROUT K, KITCHEN J A dividerless ring oscillator PLL with 250fs integrated jitter using sampled low pass filter[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67 (11): 2337- 2341
[1] 张俊杰,马永锋,陈淑燕,邢冠仰,张子煜. 高速公路施工区车队被动换道行为建模与仿真[J]. 浙江大学学报(工学版), 2024, 58(2): 381-387.
[2] 李立,平振东,徐志刚,汪贵平. 高速公路行车风险路侧感知系统的设备优化布设[J]. 浙江大学学报(工学版), 2023, 57(6): 1137-1146.
[3] 王博,张驰,任士鹏,刘昌赫,谢子龙. 基于速度风险势场的高速公路行车风险甄别方法[J]. 浙江大学学报(工学版), 2023, 57(5): 997-1008.
[4] 詹正书,赵宇,梁腾,刘准,王玮. 离散元模拟离心超重力场下的斜槽颗粒流[J]. 浙江大学学报(工学版), 2022, 56(6): 1232-1240.
[5] 陶宇,章博睿,徐磊,田洪雷,张亚鹏,张清文. 覆雪准则参数改进的高速列车转向架覆雪模拟[J]. 浙江大学学报(工学版), 2022, 56(4): 674-682.
[6] 陈航,吴昂键,郑佳庚,李晓东,严建华. 旋转滑动弧等离子体固氮的物理特性[J]. 浙江大学学报(工学版), 2021, 55(8): 1558-1565.
[7] 万有财,张雷,李明,刘斌,梅元贵. 山区高速列车车体动态当量泄漏面积阈值[J]. 浙江大学学报(工学版), 2021, 55(4): 695-703.
[8] 王玉琼,高松,王玉海,徐艺,郭栋,周英超. 高速无人驾驶车辆轨迹跟踪和稳定性控制[J]. 浙江大学学报(工学版), 2021, 55(10): 1922-1929.
[9] 夏莹杰,欧阳聪宇. 面向高速公路抛洒物检测的动态背景建模方法[J]. 浙江大学学报(工学版), 2020, 54(7): 1249-1255.
[10] 蔡路,李田,张继业. 高速列车转向架雪粒沉积特性数值研究[J]. 浙江大学学报(工学版), 2020, 54(4): 804-815.
[11] 王平,刘乐,胡辰阳,龚政,徐井芒,王智新. 基于弹性波传播的高速道岔尖轨断轨识别[J]. 浙江大学学报(工学版), 2020, 54(10): 2038-2046.
[12] 张雨,张开林,姚远. 旋转与热效应对齿轮箱轴向迷宫密封泄漏特性的影响[J]. 浙江大学学报(工学版), 2019, 53(9): 1656-1662.
[13] 孙艳红,张捷,韩健,高阳,肖新标. 高速列车风道消声器传声特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1389-1397.
[14] 代文强,郑旭,郝志勇,邱毅. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403.
[15] 苏国东, 孙玲玲, 王翔, 王尊峰, 张胜洲, 雷宇超. 126.6~128.1 GHz基波压控振荡器设计[J]. 浙江大学学报(工学版), 2018, 52(9): 1788-1795.