Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (4): 804-815    DOI: 10.3785/j.issn.1008-973X.2020.04.020
土木工程、交通工程     
高速列车转向架雪粒沉积特性数值研究
蔡路(),李田,张继业*()
西南交通大学 牵引动力国家重点实验室,四川 成都 610031
Numerical study on deposition characteristics of snow particle on bogie of high-speed train
Lu CAI(),Tian LI,Ji-ye ZHANG*()
State Key Laboratory of Traction Power, Southwest Jiao Tong University, Chengdu 610031, China
 全文: PDF(2312 KB)   HTML
摘要:

为了揭示高速列车转向架表面的雪粒沉积分布,建立基于临界捕获角度和临界剪切速度的雪粒沉积模型,采用拉格朗日方法模拟雪粒在气流中的运动,研究转向架表面的雪粒沉积特性. 研究结果表明,转向架构架底部、抗蛇行减振器、后轮对中间制动夹钳、牵引拉杆、抗侧滚扭杆区域为雪粒易堆积部位;转向架后部区域垂向面、前部区域水平面、角落区域黏附率高;无论是积雪量,还是黏附率,都是以转向架中部横梁区域为最大;各部件平均积雪量由高到低依次为:牵引拉杆、构架、摇枕、二轴制动夹钳、抗侧滚扭杆、一轴制动夹钳、横向减振器、二轴轴箱、一轴轴箱、空气弹簧、抗蛇行减振器、踏面清扫装置,其中牵引拉杆、构架、摇枕、夹钳2的平均积雪量比其他部件高出约1倍,二轴制动夹钳的平均积雪量比一轴制动夹钳高出约1倍;当临界捕获角度为30~60°时,临界捕获角度的变化对部件总的积雪量影响较小.

关键词: 高速列车转向架离散相模型风雪流雪粒沉积    
Abstract:

A snow particle deposition model based on the critical capture angle and the critical shear velocity was established in order to reveal the deposition distribution of snow particles on the bogie surface of high-speed trains. The Lagrangian method was used to simulate the motion of snow particles. The deposition characteristics of snow particle on the bogie surface were analyzed. Results show that the bottom of the bogie frame, the anti-snake damper, the intermediate brake clamps in the rear wheelset, the traction rod and the anti-rolling torsion bar are the areas prone to accumulate snow particles. The vertical surfaces of the rear region, the horizontal surfaces of the front region and the corner areas of the bogie have high adhesion rate. Whether it is the amount of snow accretion or the adhesion rate, the area of the cross beam of the bogie frame is the largest. The average snow accumulation of each component from high to low is traction rod, frame, bolster, brake clamp 2, anti-rolling torsion bar, brake clamp 1, transverse damper, axle box 2, axle box 1, air spring, anti-snake damper, tread cleaning device. The average snow accumulation on the traction rod, frame, bolster, and clamp 2 is about double that of other components, and the average snow accumulation on brake clamp 2 is about twice as high as on brake clamp 1. When the capture angle varies from 30 to 60 degrees, the change of the critical capture angle has slightly effect on the total snow accretion on each component.

Key words: high-speed train    bogie    discrete phase model    snow drift    snow particle deposition
收稿日期: 2019-03-30 出版日期: 2020-04-05
CLC:  U 271  
基金资助: 国家重点研发计划资助项目(2016YFB1200403)
通讯作者: 张继业     E-mail: cailu@my.swjtu.edu.cn;jyzhang@swjtu.edu.cn
作者简介: 蔡路(1987—),男,博士生,从事高速列车转向架防积雪结冰技术的研究. orcid.org/0000-0003-4854-7948. E-mail: cailu@my.swjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
蔡路
李田
张继业

引用本文:

蔡路,李田,张继业. 高速列车转向架雪粒沉积特性数值研究[J]. 浙江大学学报(工学版), 2020, 54(4): 804-815.

Lu CAI,Tian LI,Ji-ye ZHANG. Numerical study on deposition characteristics of snow particle on bogie of high-speed train. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 804-815.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.04.020        http://www.zjujournals.com/eng/CN/Y2020/V54/I4/804

图 1  计算域与转向架模型
图 2  粒子喷射器位置
图 3  雪粒与壁面的碰撞结果
图 4  粒子-壁面碰撞计算流程
图 5  不同网格的转向架底部中心线压力系数对比
图 6  转向架区域流场计算网格
边界区域 空气相边界条件 雪粒相边界条件
入口 速度入口 逃逸
出口 压力出口 逃逸
侧面、顶面 对称 ?
轨道、地面 移动壁面:平移 逃逸
轮对 移动壁面:旋转 反弹
转向架 无滑移壁面 自定义边界
简化车体 无滑移壁面 自定义边界
表 1  连续相和离散相边界条件
图 7  转向架区域纵向切片位置
图 8  转向架区域纵向切片上的流线
图 9  雪粒进入转向架区域的过程
图 10  转向架区域的雪粒分布
图 11  转向架表面的摩擦风速
图 12  转向架表面的雪粒入射质量分布
图 13  转向架各部件上的总雪粒撞击数
图 14  转向架表面的雪粒堆积量分布
图 15  转向架各部件的积雪量与逃逸量对比
图 16  转向架表面的雪粒黏附率分布
图 17  高速列车转向架区域积雪
图 18  不同捕获角度下的转向架各部件的平均入射量、堆积量、黏附率对比
图 19  不同捕获角度下的转向架表面雪粒堆积量分布
1 KLOOW L. High-speed train operation in winter climate [R]. Stockholm: KTH Railway Group and Transrail, 2011.
2 OKAZE T, MOCHIDA A, TOMINAGA Y, et al Wind tunnel investigation of drifting snow development in a boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104-106: 532- 539
doi: 10.1016/j.jweia.2012.04.002
3 LV X H, HUANG N, DING T Wind tunnel experiments on natural snow drift[J]. Science China Technological Sciences, 2012, 55 (4): 927- 938
doi: 10.1007/s11431-011-4731-3
4 NISHIMURA K, HUNT J C R Saltation and incipient suspension above a flat particle bed below a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 417: 77- 102
doi: 10.1017/S0022112000001014
5 ZWAAFTINK C D G, DIEBOLD M, HORENDER S, et al Modeling small-scale drifting snow with a Lagrangian stochastic model based on large-eddy simulations[J]. Boundary-Layer Meteorology, 2014, 153 (1): 117- 139
doi: 10.1007/s10546-014-9934-2
6 BEYERS M, WAECHTER B Modeling transient snowdrift development around complex three-dimensional structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 1603- 1615
doi: 10.1016/j.jweia.2008.02.032
7 BEYERS J H M, SUNDSBO P A, HARMS T M Numerical simulation of three-dimensional, transient snow drifting around a cube[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92: 725- 747
doi: 10.1016/j.jweia.2004.03.011
8 周晅毅, 顾明, 朱忠义, 等 首都国际机场3号航站楼屋面雪荷载分布研究[J]. 同济大学学报: 自然科学版, 2007, 35 (9): 1193- 1196
ZHOU Xuan-yi, GU Ming, ZHU Zhong-yi, et al Study on snow loads on roof of terminal 3 of Beijing capital international airport[J]. Journal of Tongji University: Natural Science, 2007, 35 (9): 1193- 1196
9 SUNDSBO P Numerical simulations of wind direction fins to control snow accumulation in building steps[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 543- 552
doi: 10.1016/S0167-6105(98)00049-X
10 THIIS T, FERREIRA A D Sheltering effect and snow deposition in arrays of vertical pillars[J]. Environmental Fluid Mechanics, 2015, 15 (1): 27- 39
doi: 10.1007/s10652-014-9356-1
11 TOMINAGA Y, OKAZE T, MOCHIDA A CFD modeling of snowdrift around a building: an overview of models and evaluation of a new approach[J]. Building and Environment, 2011, 46 (4): 899- 910
doi: 10.1016/j.buildenv.2010.10.020
12 TOMINAGA Y Computational fluid dynamics simulation of snowdrift around buildings: past achievement and future perspectives[J]. Cold Regions Science and Technology, 2018, 150: 2- 14
doi: 10.1016/j.coldregions.2017.05.004
13 周晅毅, 刘长卿, 顾明, 等 拉格朗日方法在风雪运动模拟中的应用[J]. 工程力学, 2015, 32 (1): 36- 42
ZHOU Xuan-yi, LIU Chang-qing, GU Ming, et al Application of Lagrangian method to snowdrift model[J]. Engineering Mechanics, 2015, 32 (1): 36- 42
14 KWON H B, PARK C S. An experimental study on the relationship between ballast flying phenomenon and strong wind under high speed train [C]// Word Congress on Rail Research. Montreal: [s. n.], 2006.
15 SHISHIDO M, NAKADE K, IDO A, et al. Development of, deflector to decrease, snow-accretion to the bogie of vehicle [C]// Preprints of the Annual Conference. Tokyo: Japanese Society of Snow and Ice, 2007: 120-120.
16 IDO A, SAITOU S, NAKADE K, et al. Study on under-floor flow to reduce ballast flying phenomena [C]// Word Congress on Rail Research. Seoul: [s. n.], 2008.
17 XIE F, ZHANG J, GAO G, et al Study of snow accumulation on a high-speed train's bogies based on the discrete phase model[J]. Journal of Applied Fluid Mechanics, 2017, 10 (6): 1729- 1745
doi: 10.29252/jafm.73.245.27410
18 WANG J B, ZHANG J, ZHANG Y, et al Impact of bogie cavity shapes and operational environment on snow accumulating on the bogies of high-speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 176: 211- 224
doi: 10.1016/j.jweia.2018.03.027
19 WANG J B, ZHANG J, XIE F, et al A study of snow accumulating on the bogie and the effects of deflectors on the deicing performance in the bogie region of a high-speed train[J]. Cold Regions Science and Technology, 2018, 148: 121- 130
doi: 10.1016/j.coldregions.2018.01.010
20 PARADOT N, ALLAIN E, CROUé R, et al. Development of a numerical modeling of snow accumulation on a high speed train [C]// International Conference on Railway Technology: Research, Development and Maintenance. Stirlingshire: Civil-Comp Press, 2014: 1-17.
21 WANG J B, GAO G J, ZHANG Y, et al Anti-snow performance of snow shields designed for brake calipers of a high-speed train[J]. Journal of Rail and Rapid Transit, 2019, 233 (2): 121- 140
doi: 10.1177/0954409718783327
22 GAO G J, ZHANG Y, XIE F, et al Numerical study on the anti-snow performance of deflectors in the bogie region of a high-speed train using the discrete phase model[J]. Journal of Rail and Rapid Transit, 2019, 233 (2): 141- 159
doi: 10.1177/0954409718785290
23 TRENKER M, PAYER W. Investigation of snow transportation and accretion on vehicles [C]// Proceedings of the 49th International Symposium of Applied Aerodynamics. Lille: [s. n.], 2006: 24-25-26.
24 SHIH T H, LIOU W, SHABBIR A, et al A new eddy-viscosity model for high Reynolds number turbulent flows: model development and validation[J]. Computers Fluids, 1995, 24 (3): 227- 238
doi: 10.1016/0045-7930(94)00032-T
25 MORSI S A, ALEXANDER A J An investigation of particle trajectories in two-phase systems[J]. Journal of Fluid Mechanics, 1972, 55 (2): 193- 208
doi: 10.1017/S0022112072001806
26 BEYERS J H M, HARMS T M Outdoors modeling of snow drifting at SANAE IV research station, Antarctica[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 91 (4): 551- 569
27 CLIFTON A, LEHNING M Improvement and validation of a snow saltation model using wind tunnel measurements[J]. Earth Surface Processes and Landforms, 2008, 33 (14): 2156- 2173
doi: 10.1002/esp.1673
28 KIND R J A critical examination of the requirements for model simulation of wind-induced erosion/deposition phenomena such as snow drifting[J]. Atmospheric Environment, 1976, 10 (3): 219- 227
doi: 10.1016/0004-6981(76)90094-9
[1] 万有财,张雷,李明,刘斌,梅元贵. 山区高速列车车体动态当量泄漏面积阈值[J]. 浙江大学学报(工学版), 2021, 55(4): 695-703.
[2] 孙艳红,张捷,韩健,高阳,肖新标. 高速列车风道消声器传声特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1389-1397.
[3] 代文强,郑旭,郝志勇,邱毅. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403.
[4] 牛纪强, 周丹, 梁习锋, 贾丽荣. 导流装置对受电弓非定常气动特性的影响[J]. 浙江大学学报(工学版), 2017, 51(4): 752-760.
[5] 张捷, 肖新标, 王瑞乾, 金学松. 高速列车铝型材声振特性测试及等效建模[J]. 浙江大学学报(工学版), 2017, 51(3): 545-553.
[6] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.
[7] 陈大伟, 姚拴宝, 刘韶庆, 郭迪龙. 高速列车头型气动反设计方法[J]. 浙江大学学报(工学版), 2016, 50(4): 631-640.
[8] 刘峰, 姚松, 刘堂红, 张洁. 高速铁路隧道壁面气动压力实车试验分析[J]. 浙江大学学报(工学版), 2016, 50(10): 2018-2024.
[9] 毛杰, 郝志勇, 孙强, 郑旭, 马晓龙, 张强. 多物理场耦合激励下的高铁车内中频噪声计算[J]. 浙江大学学报(工学版), 2015, 49(2): 315-321.
[10] 罗乐,郑旭,吕义,郝志勇. 考虑受电弓系统的高速列车气动噪声分析[J]. 浙江大学学报(工学版), 2015, 49(11): 2179-2185.
[11] 刘星,邓见,郑耀,潘国峰. 高速列车受电弓空气动力学对弓网受流的影响[J]. J4, 2013, 47(3): 558-564.
[12] 刘俊飙 ,金心宇,董芳. 高铁列车通信中无线衰落分析[J]. J4, 2012, 46(9): 1580-1584.
[13] 计时鸣, 李琛, 谭大鹏, 张利, 付有志, 王迎春. 软性磨粒流加工方法及近壁区域特性[J]. J4, 2012, 46(10): 1764-1772.