Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (7): 1389-1397    DOI: 10.3785/j.issn.1008-973X.2019.07.019
交通工程、土木工程     
高速列车风道消声器传声特性
孙艳红1(),张捷1,韩健1,高阳2,肖新标1,*()
1. 西南交通大学 牵引动力国家重点实验室,四川 成都 610031
2. 中车长春轨道客车股份有限公司,吉林 长春 130000
Sound transmission characteristics of silencer in wind ducts of high-speed train
Yan-hong SUN1(),Jie ZHANG1,Jian HAN1,Yang GAO2,Xin-biao XIAO1,*()
1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
2. CRRC Changchun Railway Vehicles Limited Company, Changchun 130000, China
 全文: PDF(1544 KB)   HTML
摘要:

为了抑制空调系统对高速列车车内噪声的影响,在风道内设置阻抗复合消声器,量化分析传声特性是高速列车低噪声设计的重要内容. 基于有限元-统计能量分析(FE-SEA)混合法建立某高速列车风道消声器传声特性分析模型,对80~3 150 Hz频率区段的风道消声器传声特性进行预测计算. 采用声学有限元法建立风道消声器声学模态分析模型,针对传递损失的峰值和谷值所在的频率区段,计算风道消声器声学模态,解释传递损失峰/谷值的成因. 从提升声学性能的角度,结合工程实际情况,对风道消声器进行设计方案优选. 结果表明:风道消声器具有良好的降噪作用,声学模态振型特性是传递损失峰/谷值的成因;消声器阻性特性对传递损失的影响最大,通过吸声选材优选可以最大提高传递损失18.0 dB;消声器抗性特性影响相对较小,通过吸声包数量和位置的优选可以最大提高传递损失4.1 dB;考虑阻抗复合优选方案,最高可以提高风道消声器传递损失18.6 dB.

关键词: 高速列车车内噪声空调系统风道消声器传递损失有限元-统计能量分析混合法    
Abstract:

A typical impedance silencer was installed in the ducts in order to inhibit the effect of air conditioning system on interior noise. The quantitative analysis of its acoustic transmission characteristics is an important part of noise reduction design for high-speed trains. The acoustic transmission model of a typical impedance silencer structure in the duct of air conditioning system was established and analyzed based on hybrid method of finite element and statistical energy analysis (FE-SEA). The transmission characteristics of the silencer between the frequencies of 80?3 150 Hz were predicted and calculated. The mechanics of peaks and valleys in the transmission loss curve were explained by calculating the acoustic modes based on the acoustic finite element method. The design projects of the silencer were optimally selected from the perspective of the acoustic performance and the actual situation of the project. Results show that the silencer in the air duct can effectively reduce noise, and its acoustic mode shape characteristics are the cause of its transmission loss peak/valley. The silencer resistive characteristics have a dominant effect on its acoustic transmission loss, and the optimal selection of acoustic absorbing material can improve the transmission loss up to about 18 dB. The resistance characteristics have relatively less effect on its transmission loss, and the optimal selection of the quantity and position of the absorption packages can improve its transmission loss by 4.1 dB. The impedance composite optimal selection can increase the transmission loss by 18.6 dB.

Key words: high-speed train    interior noise    air conditioning system    silencer in duct    transmission loss    hybrid finite element-statistical energy analysis method
收稿日期: 2018-06-07 出版日期: 2019-06-25
CLC:  U 270  
通讯作者: 肖新标     E-mail: sun_yanhong_swjtu@foxmail.com;xinbiaoxiao@163.com
作者简介: 孙艳红(1993—),女,硕士生,从事减振降噪研究. ORCID:0000-0002-5580-3789. E-mail: sun_yanhong_swjtu@foxmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
孙艳红
张捷
韩健
高阳
肖新标

引用本文:

孙艳红,张捷,韩健,高阳,肖新标. 高速列车风道消声器传声特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1389-1397.

Yan-hong SUN,Jie ZHANG,Jian HAN,Yang GAO,Xin-biao XIAO. Sound transmission characteristics of silencer in wind ducts of high-speed train. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1389-1397.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.07.019        http://www.zjujournals.com/eng/CN/Y2019/V53/I7/1389

状态 客室前 客室中 客室后
开空调 48.2 43.8 45.5
关空调 40.6 37.3 39.8
差 值 7.6 6.5 5.7
表 1  车内噪声声压级总值
图 1  开关空调时车内噪声差异频谱特性
图 2  高速列车空调系统内风道消声器模型
图 3  风道消声器仿真模型
图 4  FE-SEA混合法模型验证
图 5  风道消声器传递损失曲线
图 6  风道消声器结构声学模态
图 7  风道消声器传递损失与标准曲线
吸声材料 ρ/(kg·m?3 δ/(N·s·m?4 Po Rw/dB
矿渣棉 50 60 000 0.95 31.8
泡沫材料 55 87 000 0.97 26.8
玻璃棉 75 9 000 0.99 28.9
毛毡 50 45 000 0.92 25.3
玻璃纤维 5.5 20 000 0.94 25.8
表 2  选用的吸声材料及各参数
图 8  风道消声器吸声材料选材影响分析
图 9  消声器吸声材料厚度影响分析
图 10  吸声包数量影响分析
图 11  吸声包位置影响分析(α=81°,β=71°,γ=62°)
图 12  消声器结构方案优选对比
图 13  消声器模型综合优选方案传递损失对比
1 FANG Z, JI Z L Numerical mode matching approach for acoustic attenuation prediction of double-chamber perforated tube dissipative silencers with mean flow[J]. Journal of Computational Acoustics, 2014, 22 (2): 1450004/1- 1450004/15
2 YU X, CHENG L Duct noise attenuation using reactive silencer with various internal configurations[J]. Journal of Sound and Vibration, 2015, 335: 229- 244
doi: 10.1016/j.jsv.2014.08.035
3 李明瑞, 邓国勇, 米永振, 等 基于响应面法的乘用车消声器声学性能优化[J]. 上海交通大学学报, 2017, 51 (09): 1031- 1035
LI Ming-rui, DENG Guo-yong, MI Yong-zhen, et al Acoustic performance optimization of the exhaust muffler for a car based on response surface method[J]. Journal of Shanghai Jiao Tong University, 2017, 51 (09): 1031- 1035
4 褚志刚, 匡芳, 高小新, 等 出口管过渡圆弧对抗性消声器性能的影响及应用[J]. 农业工程学报, 2015, 31 (6): 105- 112
CHU Zhi-gang, KUANG Fang, GAO Xiao-xin, et al Effects of outlet pipe transition circular arc on properties of reactive muffler and its application[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31 (6): 105- 112
5 褚志刚, 陆小华, 沈林邦, 等 抗性消声结构声腔模态对其消声特性的影响研究[J]. 内燃机工程, 2016, 37 (4): 147- 154
CHU Zhi-gang, LU Xiao-hua, SHEN Lin-bang, et al Effects of acoustic modes in chamber on acoustic attenuation characteristics of reactive silencing elements[J]. Chinese Internal Combustion Engine Engineering, 2016, 37 (4): 147- 154
6 杨亮, 季振林 阻性管道消声性能预测的边界元数值配点混合方法[J]. 振动工程学报, 2016, 29 (3): 498- 503
YANG Liang, JI Zhen-lin Acoustic attenuation prediction of dissipative ducts by combining boundary element method and numerical point collocation approach[J]. Journal of Vibration Engineering, 2016, 29 (3): 498- 503
7 杨亮, 季振林 消声器中高频传递损失计算的有限元-模态匹配混合方法[J]. 振动与冲击, 2017, (23): 243- 247
YANG Liang, JI Zhen-lin FE-mode maching hybridapproach for transmission loss prediction of silencers in mid-high frequency range[J]. Journal of Vibration and Shock, 2017, (23): 243- 247
8 杨亮, 季振林 穿孔消声器传递损失预测的快速多极混体边界元方法[J]. 哈尔滨工程大学学报, 2017, 38 (8): 1247- 1253
YANG Liang, JI Zhen-lin Transmission loss prediction of perforated silencers by fast multipole mixed-body boundary element method[J]. Journal of Harbin Engineering University, 2017, 38 (8): 1247- 1253
9 ZHU D D, JI Z L Transmission loss prediction of reactive silencers using 3-D time-domain CFD approach and plane wave decomposition technique[J]. Applied Acoustics, 2016, 112: 25- 31
doi: 10.1016/j.apacoust.2016.05.004
10 李恒, 郝志勇, 刘联鋆, 等 多腔穿孔消声器声学特性三维时域计算及评估[J]. 浙江大学学报: 工学版, 2015, 49 (5): 887- 892
LI Heng, HAO Zhi-yong, LIU Lian-yun, et al Three-dimensional time-domain computation and evaluation of acoustic performance of multi-cavity perforated muffler[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (5): 887- 892
11 范威, 郭立新 考虑气流影响的直通穿孔管消声器声学性能[J]. 东北大学学报: 自然科学版, 2016, 37 (11): 1655- 1659
FAN Wei, GUO Li-xin Acoustic performance of the straight-through perforated pipe silencer considering the effect of gas flow[J]. Journal of Northeasten University: Natural Science, 2016, 37 (11): 1655- 1659
12 JI L, HUANG Z. A case study of random boundary effects on the mid-frequency vibration of built-up systems [C] // Inter-Noise and Noise-Con Congress and Conference Proceedings. Sorrento: INCE, 2012: 377-382.
13 中华人民共和国建设部. 中华人发共和国国家标准建筑隔声评价标准:GB/T 50121-2005 [S]. 北京: 中国建筑工业出版社, 2005.
14 LEE I, SELAMET A, HUFF N T Impact of perforation impedance on the transmission loss of reactive and dissipative silencers[J]. Journal of the Acoustical Society of America, 2006, 120 (6): 3706- 3713
doi: 10.1121/1.2359703
15 项端祈. 空调系统消声与隔振设计[M]. 1版. 北京: 机械工业出版社, 2005.
16 ALLARD J F, ATALLA N. Propagation of sound in porous media: modeling sound absorbing materials [M]. 2nd ed. West Sussex: Wiley, 2009.
17 段翠云, 崔光, 刘培生 多孔吸声材料的研究现状与展望[J]. 金属功能材料, 2011, 18 (1): 60- 65
DUAN Cui-yun, CUI Guang, LIU Pei-sheng Present research and prospect of porous absorption materials[J]. Metallic Functional Materials, 2011, 18 (1): 60- 65
[1] 万有财,张雷,李明,刘斌,梅元贵. 山区高速列车车体动态当量泄漏面积阈值[J]. 浙江大学学报(工学版), 2021, 55(4): 695-703.
[2] 蔡路,李田,张继业. 高速列车转向架雪粒沉积特性数值研究[J]. 浙江大学学报(工学版), 2020, 54(4): 804-815.
[3] 代文强,郑旭,郝志勇,邱毅. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403.
[4] 瞿熠卿, 郝志勇, 李恒, 郑旭, 周南. 进气系统编织管声学性能[J]. 浙江大学学报(工学版), 2018, 52(10): 1894-1900.
[5] 牛纪强, 周丹, 梁习锋, 贾丽荣. 导流装置对受电弓非定常气动特性的影响[J]. 浙江大学学报(工学版), 2017, 51(4): 752-760.
[6] 张捷, 肖新标, 王瑞乾, 金学松. 高速列车铝型材声振特性测试及等效建模[J]. 浙江大学学报(工学版), 2017, 51(3): 545-553.
[7] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.
[8] 巫江虹, 姜峰. 基于动态负荷的空调生命周期气候性能[J]. 浙江大学学报(工学版), 2017, 51(10): 2061-2069.
[9] 陈大伟, 姚拴宝, 刘韶庆, 郭迪龙. 高速列车头型气动反设计方法[J]. 浙江大学学报(工学版), 2016, 50(4): 631-640.
[10] 刘峰, 姚松, 刘堂红, 张洁. 高速铁路隧道壁面气动压力实车试验分析[J]. 浙江大学学报(工学版), 2016, 50(10): 2018-2024.
[11] 李恒,郝志勇,刘联鋆,郑旭. 多腔穿孔消声器声学特性三维时域计算及评估[J]. 浙江大学学报(工学版), 2015, 49(5): 887-892.
[12] 毛杰, 郝志勇, 孙强, 郑旭, 马晓龙, 张强. 多物理场耦合激励下的高铁车内中频噪声计算[J]. 浙江大学学报(工学版), 2015, 49(2): 315-321.
[13] 罗乐,郑旭,吕义,郝志勇. 考虑受电弓系统的高速列车气动噪声分析[J]. 浙江大学学报(工学版), 2015, 49(11): 2179-2185.
[14] 刘星,邓见,郑耀,潘国峰. 高速列车受电弓空气动力学对弓网受流的影响[J]. J4, 2013, 47(3): 558-564.
[15] 刘俊飙 ,金心宇,董芳. 高铁列车通信中无线衰落分析[J]. J4, 2012, 46(9): 1580-1584.