Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (10): 2061-2069    DOI: 10.3785/j.issn.1008-973X.2017.10.022
环境工程、化学工程     
基于动态负荷的空调生命周期气候性能
巫江虹, 姜峰
华南理工大学 机械与汽车工程学院, 广东 广州 510641
Life cycle climate performance of air conditioner based on dynamic loads
WU Jiang-hong, JIANG Feng
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
 全文: PDF(2568 KB)   HTML
摘要:

针对当前中国房间空调器领域缺少全面系统地计算空调全生命周期气候性能(LCCP)模型的问题,结合辐射时间序列法(RTSM)与空调系统LCCP计算,利用RSTM法对空调负荷进行动态计算.根据室外温度、城市所处温区和室内人员状态对空调开启条件进行定义,使得空调开机时间更贴近实际情况.通过Visual Studio 2013构造整体的软件模型,分析不同制冷剂、不同温区、不同能源结构、不同生活特性和不同墙体轻重类型对空调系统LCCP的影响.分析结果表明,采用新型制冷剂、环保的电力生产结构和重质墙体,能够有效地减少空调系统LCCP,夏热冬冷地区空调系统带来的温室效应远高于集中供暖地区(严寒地区和寒冷地区).

Abstract:

An organic combination of radiant time series method (RTSM) and life cycle climate performance (LCCP) was proposed regarding to the problem that there is a lack of a comprehensive and systematic model of LCCP in the field of room air conditionings at the present in China. The room air conditioning (RAC) dynamic loads can be accurately calculated through RTSM. The switch on condition of air conditioners was defined through synthetically considering the outdoor environment, temperature zone and personnel status in air conditioning room, which results in the air conditioner operating time being closer to actual situation. A monolithic LCCP calculation model was established based on Visual Studio 2013. Then the influences on air conditioning system LCCP by different refrigerants, different temperature zones, different energy structure, different life characteristics and different construction class were analyzed. Results show that LCCP of room air conditioning system can be effectively reduced by means of applying new refrigerants, environmental energy structure and heavy wall construction. Greenhouse effect created by air conditioning system in "hot summer and cold winter" zone is significantly higher than that in "central heating" zone (cold zone and sever cold zone).

收稿日期: 2016-09-20 出版日期: 2017-09-27
CLC:  X828  
基金资助:

环境保护部环境保护对外合作中心资助项目(C/III/S/15/008,C/III/S/15/398).

作者简介: 巫江虹(1967-),女,教授,博导,从事制冷技术及暖通空调技术的研究.ORCID:0000-0001-5269-6175.E-mail:pmjhwu@scut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

巫江虹, 姜峰. 基于动态负荷的空调生命周期气候性能[J]. 浙江大学学报(工学版), 2017, 51(10): 2061-2069.

WU Jiang-hong, JIANG Feng. Life cycle climate performance of air conditioner based on dynamic loads. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 2061-2069.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.10.022        http://www.zjujournals.com/eng/CN/Y2017/V51/I10/2061

[1] CHRISTOPHE C, DOMINIQUE R. Needs of thermodynamic properties measurements and modeling in the frame of new regulations on refrigerants[J]. Journal of Zhejiang University Science A:an International Applied Physics and Engineering Journal, 2007, 8(5):724-733.
[2] ARMIN H, NEKSÅ P, PETTERSEN J. Life cycle climate performance (LCCP) of mobile air-conditioning systems with HFC-134A, HFC-152a, and R-744[C]//VDA Alternative Refrigerant Winter Meeting Saafelden. Washington:SINTEF, 2004.
[3] STEPHEN A K, PANAYU R S, KENNETH J S. Assessment of life cycle climate performance (LCCP) tools for HVAC&R applications with the latest next generation refrigerant technology[C]//International Refrigeration and Air Conditioning Conference. West Lafayette:Purdue University Press, 2014.
[4] STELLA P, WILLIAM R H, RYAN O B. GREEN-MAC-LCCP®:a tool for assessing life cycle greenhouse emissions of alternative refrigerants[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2009, 1(1):746-756.
[5] NASUTA D, SRICHAI R, ZHANG M, et al. Life cycle climate performance model for transport refrigeration/air conditioning systems[C]//ASHRAE 2014 Annual Conference. Seattle:ASHRAE, 2014.
[6] 王子伟. 汽车空调生命周期气候性能评估模型[D]. 上海:上海交通大学, 2014. WANG Zi-wei. Life cycle climate performance evaluation model for mobile air conditioning system[D]. Shanghai:Shanghai Jiaotong University, 2014.
[7] MING Z, JAN M. Life cycle climate performance model for residential heat pump systems[C]//International Refrigeration and Air Conditioning Conference. West Lafayette:Purdue University Press, 2012.
[8] HAYATO H, TAMUMI K, CHAOBIN D, et al. Study on cycle property and LCCP evaluation of heat pump suing HFO-1234yf, HFC-32, and HFC-410A as refrigerant[C]//2010 International Symposium on Next-Generation Air Conditioning and Refrigeration Technology. Tokyo:Japanese Association of Refrigeration, 2010.
[9] MONIKA W, GUILLERMO R, SILKE G, et al. Hasse diagram technique:a useful tool for life cycle assessment of refrigerants[C]//Environmental Informatics and Systems Research. Aachen:Shaker Verlag, 2007.
[10] 屈睿瑰.建筑热平衡模型及南昌市建筑能耗初步分析[D].南昌:华东交通大学, 2007. QU Rui-gui. Thermal balance model and simulation and analyses of building energy consumption in Nanchang[D]. Nanchang:East China Jiaotong University, 2007.
[11] 彦启森.建筑热过程[M].北京:中国建筑工业出版社, 1986:88-89.
[12] SPITLER J D, FISHER D E. Development of periodic response factors for use with the radiant time series method[J]. Ashrae Transactions, 1999, 105(2):491-510.
[13] 周娟.空调负荷计算新方法的应用研究[D].长沙:湖南大学, 2004. ZHOU Juan. The research on applying novel but simple methods for the space load calculation in HVAC[D]. Changsha:Hunan University, 2004.
[14] GB 50176-2016,民用建筑热工设计规范[S]. 北京:中国建筑工业出版社, 2016.
[15] https://energyplus.net/weather-region/asia_wmo_region_2/CHN%20%20[DB/OL].[2017-09-13].
[16] BREEAM UK refurbishment and fit-out 2014[M]. UK:BRE Global, 2014.
[17] DIECKMANN J T, MAGID H. Global comparativeanalysis of HFC and alternative technologies for refrigeration, air conditioning, foam, solvent, aerosol propellant, and fire protection applications[R]. Cambridge, Massachusetts:Arthur D. Little Incorporated, 1999.
[18] WECKERT M. Comparative life cycle assessment of CFC-replacement compounds in different technical applications[D]. Bayreuth:University of Bayreuth,2008.
[19] YUNHO H. ⅡR Working party on life cycle climate performance evaluation[C]//11th Gustav Lorentzen Conference. Hangzhou:International Institute ofRefrigeration, 2014.
[20] 史琳,朱明善.LCCP,一种全球气候变暖影响的评价指标[J].暖通空调, 2004, 34(10):33-38. SHI Lin, ZHU Ming-shan. LCCP-an index evaluating global warming impact[J]. Journal of HV and AC, 2004, 34(10):33-38.
[21] 孙锌,刘晶茹,杨东,等.家用空调碳足迹及其关键影响因素分析[J].环境科学学报,2014,34(4):1054-1060. SUN Xin, LIU Jing-ru, YANG Dong, et al. The carbon footprint of household air-conditioner and its key influence factors[J]. Acta Scientiae Circumstantiae, 2014, 34(4):1054-1060.
[22] 重型商用车辆燃料消耗量限值:GB 30510-2014[S].北京:中国标准出版社,2014.
[23] 国家发改委司.2015年中国区域电网基准线排放因子[EB/OL].[2016-06-06].http://cdm.ccchina.gov.cn/Detail.aspx?newsID=61599&tiD=19.
[24] 冯旭杰.基于生命周期的高速铁路能源消耗和碳排放建模方法[D].北京:北京交通大学,2014. FENG Xu-jie. Modeling life cycle energy consumption and greenhouse gas emission for high-speed railways[D]. Beijing:Beijing Jiaotong University, 2014.

No related articles found!